Article

Preparation and High-performance Lithium-ion Storage of Cobalt-free Perovskite High-entropy Oxide Anode Materials

  • Yanggang Jia ,
  • Shijie Chen ,
  • Xia Shao ,
  • Jie Cheng ,
  • Na Lin ,
  • Daolai Fang ,
  • Aiqin Mao ,
  • Canhua Li
Expand
  • a School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243032
    b Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma’anshan 243032
    c School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243032
*E-mail: , Tel.: 13855599146;
, Tel.: 18162347179

Received date: 2023-02-23

  Online published: 2023-04-18

Supported by

Natural Science Foundation of Anhui Province(2008085ME125); Director's Fund of Key Laboratory of Green Fabrication and Surface Technology of Advance Matal Materials, Ministry of Education(GFST2022ZR08); University Natural Science Research Project of Anhui Province in China(KJ2020A0268)

Abstract

High-entropy oxides (HEOs) have become increasingly popular as energy storage materials owing to their unique high-entropy effect, multi-principal synergy effect and customizable structure. In this study, a series of cobalt-free perovskite high-entropy oxide La(Cr0.2Fe0.2Mn0.2Ni0.2M0.2)O3 (M=Cu, Mg, Zn) lithium-ion battery anode materials were successfully synthesized by solution combustion method using metal nitrate as the metal source and glycine as the fuel. The microstructure and electrochemical properties of the as-prepared powders were investigated. The results show that the as-prepared high- entropy oxides crystalize into single-phase perovskite structure with porous foam-like shape and chemical/microstructural homogeneity. Furthermore, the as-prepared HEOs introducing inactive element Mg or active element Cu possess similar electrochemical performance; while the La(Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)O3 electrode exhibits a highest reversible capacity (1014 mAh•g−1 at 200 mA•g−1 after 250 cycles), excellent cycling stability (450 mAh•g−1 at 1000 mA•g−1 and almost no capacity decay after 1000 cycles) and outstanding rate performance. Such excellent performance can be attributed to the addition of active element Zn, which can form Li-Zn alloy during the reduction process that makes the specific capacity increase significantly. Meanwhile, its higher specific surface area, mesoporous structure and abundant surface oxygen vacancies result in higher conductivity (0.14 S•cm−1), increased larger lithium ion diffusion coefficient (2.1×10−12 cm2•s−1), and pseudo-capacitance contribution, thus significantly enhances the specific capacity and rate performance of the as-prepared material. Therefore, the introduction of electrochemically active metals, which can react with Li alloying, such as Zn, can improve the electrochemical performance, thereby providing ideas for designing cobalt-free HEOs with low-cost and excellent performance for energy storage.

Cite this article

Yanggang Jia , Shijie Chen , Xia Shao , Jie Cheng , Na Lin , Daolai Fang , Aiqin Mao , Canhua Li . Preparation and High-performance Lithium-ion Storage of Cobalt-free Perovskite High-entropy Oxide Anode Materials[J]. Acta Chimica Sinica, 2023 , 81(5) : 486 -495 . DOI: 10.6023/A23020046

References

[1]
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Nat. Energy 2019, 4, 540.
[2]
Zhang, H.; Wang, F.; Wang, Y.; Wei, H. W.; Zhang, W.; Cao, R.; Zheng, H. Q. J. Colloid Interface Sci. 2023, 631, 191.
[3]
Wei, S.; Wan, C. C.; Zhang, L. Y.; Liu, X. Y.; Tian, W. Y.; Su, J. H.; Cheng, W. J.; Wu, Y. Q. Chem. Eng. J. 2022, 429, 132242.
[4]
Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Nano Energy 2016, 27, 359.
[5]
Wang, Y. T.; Jiang, N.; Pan, D. H.; Jiang, H.; Hu, Y. J.; Li, C. Z. Chem. Eng. J. 2022, 437, 135422.
[6]
Wang, X. L.; Liu, J.; Hu, Y. F.; Ma, R. G.; Wang, J. C. Sci. China Mater. 2022, 65, 1421.
[7]
Patra, J.; Nguyen, T. X.; Tsai, C. C.; Clemens, O.; Li, J.; Pal, P.; Chan, W. K.; Lee, C. H.; Chen, H. Y. T.; Ting, J. M.; Chang, J. K. Adv. Funct. Mater. 2022, 32, 2110992.
[8]
Nguyen, T. X.; Tsai, C.-C.; Patra, J.; Clemens, O.; Chang, J.-K.; Ting, J.-M. Chem. Eng. J. 2022, 430, 132658.
[9]
Fang, L.; Ding, X. L.; Song, Y.; Liu, D. M.; Li, Y. T.; Zhang, Q. A. Chem. J. Chinese Universities 2019, 40, 1456. (in Chinese)
[9]
(方亮, 丁晓丽, 宋云, 柳东明, 李永涛, 张庆安, 高等学校化学学报, 2019, 40, 1456.)
[10]
Nishikubo, T.; Sakai, Y.; Oka, K.; Mizumaki, M.; Watanuki, T.; Machida, A.; Maejima, N.; Ueda, S.; Mizokawa, T.; Azuma, M. Appl. Phys. Express 2018, 11, 61102.
[11]
Xu, Y.; Xu, X.; Bi, L. J. Adv. Ceram. 2022, 11, 794.
[12]
Zheng, Y.; Zou, M.; Zhang, W.; Yi, D.; Lan, J.; Nan, C. W.; Lin, Y. H. J. Adv. Ceram. 2021, 10, 377.
[13]
Xiang, H.; Xing, Y.; Dai, F.-Z.; Wang, H.; Su, L.; Miao, L.; Zhang, G.; Wang, Y.; Qi, X.; Yao, L.; Wang, H.; Zhao, B.; Li, J.; Zhou, Y. J. Adv. Ceram. 2021, 10, 385.
[14]
Zhang, W.; Zhao, B.; Xiang, H.; Dai, F.-Z.; Wu, S.; Zhou, Y. J. Adv. Ceram. 2021, 10, 62.
[15]
Yan, S.; Luo, S.; Yang, L.; Feng, J.; Li, P.; Wang, Q.; Zhang, Y.; Liu, X. J. Adv. Ceram. 2022, 11, 158.
[16]
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; Biasi, L. d.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B. Nat. Commun. 2018, 9, 3400.
[17]
Xiao, B.; Wu, G.; Wang, T. D.; Wei, Z. G.; Sui, Y. W.; Shen, B. L.; Qi, J. Q.; Wei, F. X.; Meng, Q. K.; Ren, Y. J.; Xue, X. L.; Zheng, J. C.; Mao, J.; Dai, K. H. Ceram. Int. 2021, 47, 33972.
[18]
Shao, X.; Jia, Y. G.; Cheng, J.; Fang, D. L.; Mao, A. Q.; Tan, J. Chin. J. Process Eng. 2022, DOI:10.12034/j.issn.1009-606X.222242. (in Chinese)
[18]
(邵霞, 贾洋刚, 程婕, 方道来, 冒爱琴, 檀杰, 过程工程学报, 2022, DOI:10.12034/j.issn.1009-606X.222242.)
[19]
Jia, Y. G.; Shao, X.; Cheng, J.; Wang, P. P.; Mao, A. Q. Chem. J. Chinese Universities 2022, 43, 157. (in Chinese)
[19]
(贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴, 高等学校化学学报, 2022, 43, 157.)
[20]
Li, S.; Peng, Z. J.; Fu, X. L. J. Adv. Ceram. 2023, 12, 59.
[21]
Luo, X. F.; Patra, J.; Chuang, W. T.; Nguyen, T. X.; Ting, J. M.; Li, J.; Pao, C. W.; Chang, J. K. Adv. Sci. 2022, 9, 2201219.
[22]
Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi- Tamburini, U.; D'Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G.; de Souza, D. O.; Quartarone, E. ACS Appl. Mater. Interfaces 2020, 12, 50344.
[23]
Guo, M.; Liu, Y. F.; Zhang, F. N.; Cheng, F. H.; Cheng, C. F.; Miao, Y.; Gao, F.; Yu, J. J. Adv. Ceram. 2022, 11, 742.
[24]
Liu, X. F.; Xing, Y. Y.; Xu, K.; Zhang, H. J.; Gong, M. X.; Jia, Q. L.; Zhang, S. W.; Lei, W. Small 2022, 18, 524.
[25]
Fang, D. L.; Zhao, Y. C.; Wang, S. S.; Hu, T. S.; Zheng, C. H. Electrochim. Acta 2020, 330, 135346.
[26]
Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Angew. Chem., Int. Ed. 2020, 59, 19503.
[27]
Zheng, Y.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. Energy Storage Mater. 2019, 23, 678.
[28]
Wang, Q.; Wu, Y. Z.; Pan, N.; Yang, C. Y.; Wu, S.; Li, D. J.; Gu, S. N.; Zhou, G. W.; Chai, J. L. Front. Chem. 2022, 10, 1052560.
[29]
Hu, Q. L.; Yue, B.; Shao, H. Y.; Yang, F.; Wang, J. H.; Wang, Y.; Liu, J. H. J. Alloys Compd. 2021, 852, 157002.
[30]
Wang, P. P.; Jia, Y. G.; Shao, X.; Cheng, J.; Mao, A. Q.; Tan, J.; Fang, D. L. CIESC J. 2022, 73, 5625. (in Chinese)
[30]
(王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来, 化工学报, 2022, 73, 5625.)
[31]
Tian, K. H.; Duan, C. Q.; Ma, Q.; Li, X. L.; Wang, Z. Y.; Sun, H. Y.; Luo, S. H.; Wang, D.; Liu, Y. G. Rare Met. 2021, 41, 1265.
[32]
Li, L.; Meng, T.; Wang, J.; Mao, B. G.; Huang, J. B.; Cao, M. H. ACS Appl. Mater. Interfaces 2021, 13, 24804.
[33]
Tang, Z. K.; Xue, Y. F.; Teobaldi, G.; Liu, L. M. Nanoscale Horiz. 2020, 5, 1453.
[34]
Duan, C. Q.; Tian, K. H.; Li, X. L.; Wang, D.; Sun, H. Y.; Zheng, R. G.; Wang, Z. Y.; Liu, Y. G. Ceram. Int. 2021, 47, 32025.
[35]
Xiang, H. Z.; Xie, H. X.; Chen, Y. X.; Zhang, H.; Mao, A. Q.; Zheng, C. H. J. Mater. Sci. 2021, 56, 8127.
[36]
Chchiyai, Z.; Hdidou, L.; Tayoury, M.; Chari, A.; Tamraoui, Y.; Alami, J.; Dahbi, M.; Manoun, B. J. Alloys Compd. 2023, 935, 167997.
[37]
Wang, K.; Hua, W. B.; Huang, X. H.; Stenzel, D.; Wang, J. B.; Ding, Z. M.; Cui, Y. Y.; Wang, Q. S.; Ehrenberg, H.; Breitung, B.; Kubel, C.; Mu, X. K. Nat. Commun. 2023, 14, 1487.
[38]
Xiao, B.; Wu, G.; Wang, T.; Wei, Z. G.; Xie, Z. L.; Sui, Y. W.; Qi, J. Q.; Wei, F. X.; Zhang, X. H.; Tang, L. B.; Zheng, J. C. ACS Appl. Mater. Interfaces 2023, 15, 2792.
[39]
Bi, W. C.; Zhang, L. F.; Chen, J.; Tian, R. X.; Huang, H.; Yao, M. Acta Chim. Sinica 2022, 80, 756. (in Chinese)
[39]
(毕文超, 张琳锋, 陈健, 田瑞雪, 黄昊, 姚曼, 化学学报, 2022, 80, 756.)
[40]
Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Chem. Rev. 2020, 120, 6934.
[41]
Zhang, M.; Lei, X.; Lv, Y.; Liu, X.; Ding, Y. Chinese J. Chem. 2021, 39, 2801.
[42]
Sun, M.; Sheng, X. L.; Li, S. J.; Cui, Z. P.; Li, T.; Zhang, Q. Y.; Xie, F.; Wang, Y. Q. J. Alloys Compd. 2022, 926, 166809.
[43]
Nguyen, A. T.; Nguyen, T.-A.; Mittova, V. O.; Ngo, H. D.; Le, M. L. P.; Nguyen, D. Q.; Mittova, I. Y.; Nguyen, V. H.; Hiroshi, S.; Bui, H. T.; Nguyen, T. L. J. Mater. Sci.: Mater. Electron. 2022, 33, 19082.
[44]
Nguyen, A. T.; Phung, V. D.; Mittova, V. O.; Ngo, H. D.; Vo, T. N.; Thi, M. L. L.; Nguyen, V. H.; Mittova, I. Y.; Le, M. L. P.; Ahn, Y. N.; Kim, I. T.; Nguyen, T. L. Scr. Mater. 2022, 207, 114259.
[45]
Li, S. H.; Wang, X. H.; Shi, Z. M.; Wang, J.; Ji, G. J.; Yaer, X. Materials 2022, 15, 6929.
[46]
Li, H. Q.; Bin, Y.; Yang, S. H.; Fan, Y.; Hui, W. J.; Yin, W.; Hai, L. J. J. Alloys Compd. 2021, 852, 157002.
[47]
Yan, J. H.; Wang, D.; Zhang, X. Y.; Li, J. S.; Du, Q.; Liu, X. Y.; Zhang, J. R.; Qi, X. W. J. Mater. Sci. 2020, 55, 6942.
[48]
Xiang, H. Z.; Xie, H. X.; Li, W. C.; Liu, X. L.; Mao, A. Q.; Yu, H. Y. Chem. J. Chinese Universities 2020, 41, 1801. (in Chinese)
[48]
(项厚政, 谢鸿翔, 李文超, 刘晓磊, 冒爱琴, 俞海云, 高等学校化学学报, 2020, 41, 1801.)
[49]
Chen, H.; Qiu, N.; Wu, B. Z.; Yang, Z. M.; Sun, S.; Wang, Y. RSC Adv. 2020, 10, 9736.
[50]
Chen, H.; Qiu, N.; Wu, B. Z.; Yang, Z. M.; Sun, S.; Wang, Y. RSC Adv. 2019, 9, 28908.
[51]
Shen, L. F.; Lv, H. F.; Chen, S. Q.; Kopold, P.; Aken, P. A. v.; Wu, X. J.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 142.
[52]
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abru?a, H. D.; Simon, P.; Dunn, B. Nat. Mater. 2013, 12, 518.
[53]
Shi, A. D.; Chen, S.; Zheng, S. S.; Wang, Z. L. Acta Chim. Sinica 2021, 79, 1511. (in Chinese)
[53]
(史傲迪, 陈思, 郑淞生, 王兆林, 化学学报, 2021, 79, 1511.)
[54]
Lv, H. L.; Wang, X. J.; Yu, Y.; Tao, L.; Zhang, L. Y. Acta Phys.- Chim. Sin. 2023, 39, 10014.
[55]
Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Phys. Chem. C 2011, 115, 16220.
[56]
Du, X. Y.; Wen, H.; Zhang, X. D.; Yue, Y. Z.; Hong, L.; Zhang, X. G.; Min, D. D.; Gea, X. X.; Yi, D. J. Mater. Chem. 2012, 22, 5960.
[57]
Wang, J. B.; Cui, Y. Y.; Wang, Q. S.; Wang, K.; Huang, X. H.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B. Sci. Rep. 2020, 10, 18430.
[58]
Castelli, G. F.; D?rfler, W. Comput. Math. Appl. 2019, 77, 1527.
[59]
Li, T. X.; Li, D. L.; Zhang, Q. B.; Gao, J. H.; Kong, X. Z.; Fan, X. Y.; Gou, L. Acta Chim. Sinica 2021, 79, 678. (in Chinese)
[59]
(李童心, 李东林, 张清波, 高建行, 孔祥泽, 樊小勇, 苟蕾, 化学学报, 2021, 79, 678.)
[60]
Fan, X. Y.; Zhang, S.; Zhu, Y. Q.; Jing, M. S.; Wang, K. X.; Zhang, L. L.; Li, J. L.; Xu, L.; Gou, L.; Li, D. L. Acta Chim. Sinica 2022, 80, 517. (in Chinese)
[60]
(樊小勇, 张帅, 朱永强, 敬茂森, 王凯鑫, 张露露, 李巨龙, 许磊, 苟蕾, 李东林, 化学学报, 2022, 80, 517.)
[61]
Liang, S. S.; Kang, S. S.; Yang, D.; Hu, J. H. Acta Chim. Sinica 2022, 80, 1264. (in Chinese)
[61]
(梁世硕, 康树森, 杨东, 胡建华, 化学学报, 2022, 80, 1264.)
[62]
Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J. Nano Energy 2022, 95, 106962.
Outlines

/