Article

Self-partition Supercapacitor Based on Temperature-induced Phase Transition Copolymer and Conductive Polymer

  • Xian Li ,
  • Xiaokun Li
Expand
  • a Henan Intelligent Safety Engineering Research Center for Rail Transit, Zhengzhou 450018, China
    b Zhengzhou Railway Vocational Technical College, Zhengzhou 450052, China

Received date: 2023-02-28

  Online published: 2023-04-20

Supported by

National Natural Science Foundation of China(52175123)

Abstract

In order to improve the safety of energy storage devices including supercapacitors and expand their practical application, this work proposes an intelligent yet efficient self-partition strategy for the most common problem of thermal runaway at this stage. Firstly, N-isopropylacrylamide (NIPAM) and acrylamide (AM) are copolymerized by free radical polymerization to obtain a thermally responsive copolymer, which is dissolved in lithium chloride aqueous solution as the electrolyte. Self-partition supercapacitors are obtained by combining this as-prepared electrolyte with conductive polymer electrodes. Benefiting from the temperature-induced phase transition characteristics of thermally responsive electrolyte, the supercapacitors not only have efficient charge-discharge characteristics but also automatically cut off the ion transfer after the thermal runaway of the device with a self-partition efficiency of 88.1%, preventing the further deterioration of the device. In addition, the copolymer will shrink after the phase change caused by thermal runaway, which scatters the light and shows milky white with low transmittance, making it possible to troubleshoot the faulty devices with thermal runaway through color change. Therefore, the intelligent and high-safety supercapacitors prepared in this work will further provide a potential reference for the popularization and application of energy storage devices.

Cite this article

Xian Li , Xiaokun Li . Self-partition Supercapacitor Based on Temperature-induced Phase Transition Copolymer and Conductive Polymer[J]. Acta Chimica Sinica, 2023 , 81(5) : 511 -519 . DOI: 10.6023/A23020055

References

[1]
Zhai, Y.; Xin, G. X.; Wang, J. Q.; Zhang, B. W.; Song, J. L.; Liu, X. X. Acta Chim. Sinica 2021, 79, 1129. (in Chinese)
[1]
(翟耀, 辛国祥, 王佳琦, 张邦文, 宋金玲, 刘晓旭, 化学学报, 2021, 79, 1129.)
[2]
Zhu, J. H.; Zhang, Q.; Zhang, R. Y.; Liu, L. F. Acta Polym. Sinica 2022, 53, 1484. (in Chinese)
[2]
(朱建华, 张倩, 张瑞云, 刘丽芳, 高分子学报, 2022, 53, 1484.)
[3]
Fan, Q.; Miao, J. L.; Liu, X. H.; Zuo, X. W.; Zhang, W. X.; Tian, M. W.; Zhu, S. F.; Qu, L. J. Acta Polym. Sinca 2022, 53, 617. (in Chinese)
[3]
(范强, 苗锦雷, 刘旭华, 左杏薇, 张文枭, 田明伟, 朱士凤, 曲丽君, 高分子学报, 2022, 53, 617.)
[4]
Gao, R. Z.; Li, G. C.; Chen, Y. Q.; Zeng, Y.; Zhao, J.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2021, 79, 755. (in Chinese)
[4]
(高润洲, 李国昌, 陈轶群, 曾誉, 赵杰, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 755.)
[5]
Zhao, J.; Gong, J. W.; Li, Y. J.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Wang, G. L. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[5]
(赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[6]
Liu, C. X.; Yu, Y. G.; Chang, Y. Z.; Zhou, W.; Yuan, W.; Han, G. Y. Acta Polym. Sinica 2016, 3, 352. (in Chinese)
[6]
(刘翠仙, 余雅国, 常云珍, 周雯, 袁伟, 韩高义, 高分子学报, 2016, 3, 352.)
[7]
Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G.; Brett, D. J. L.; Shearing, P. R. Nat. Commun. 2015, 6, 6924.
[8]
Zhou, H.; Parmananda, M.; Crompton, K. R.; Hladky, M. P.; Dann, M. A.; Ostanek, J. K.; Mukherjee, P. P. Energy Storage Mater. 2022, 44, 326.
[9]
Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Joule 2020, 4, 743.
[10]
Cheng, X. L.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. S. Adv. Energy Mater. 2018, 8, 1702184.
[11]
Jia, Z. R.; Wang, Z. P.; Wang, Q. S.; Li, X. H.; Sun, F. C. Automotive Eng. 2022, 44, 1689. (in Chinese)
[11]
(贾子润, 王震坡, 王秋诗, 黎小慧, 孙逢春, 汽车工程, 2022, 44, 1689.)
[12]
Kim, J.; Oh, J.; Lee, H. Appl. Therm. Eng. 2019, 149, 192.
[13]
Feng, X. M.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2004, 6, 1021.
[14]
Li, Y. L.; Feng, X. N.; Ren, D. S.; Ouyang, M. G.; Lu, L. G.; Han, X. B. ACS Appl. Mater. Interfaces 2019, 11, 46839.
[15]
Yuan, M. Q.; Liu, K. J. Energy Chem. 2020, 43, 58.
[16]
Zhou, Y.; Wang, S. C.; Peng, J. Q.; Tan, Y. T.; Li, C. C.; Boey, F. Y. C.; Long, Y. Joule 2020, 4, 2458.
[17]
Zhang, P. P.; Wang, J. H.; Sheng, W. B.; Wang, F. X.; Zhang, J.; Zhu, F.; Zhuang, X. D.; Jordan, R.; Schmidt, O. G.; Feng, X. L. Energ. Environ. Sci. 2018, 11, 1717.
[18]
Yang, H.; Liu, Z. Y.; Chandran, B. K.; Deng, J. Y.; Yu, J. C.; Qi, D. P.; Li, W. L.; Tang, Y. X.; Zhang, C. G.; Chen, X. D. Adv. Mater. 2015, 27, 5593.
[19]
Kang, S. K.; Ho, D. H.; Lee, C. H.; Lim, H. S.; Cho, J. H. ACS Appl. Mater. Interfaces 2020, 12, 33838.
[20]
Wu, T.; Zou, G.; Hu, J. M.; Liu, S. Y. Chem. Mater. 2009, 21, 3788.
[21]
Lee, H. Y.; Cai, Y.; Bi, S.; Liang, Y. N.; Song, Y.; Hu, X. M. ACS Appl. Mater. Interfaces 2017, 9, 6054.
[22]
Li, H.; Mcrae, L.; Firby, C. J.; Elezzabi, A. Y. Adv. Mater. 2019, 31, e1807065.
[23]
Ginting, R. T.; Ovhal, M. M.; Kang, J. W. Nano Energy 2018, 53, 650.
[24]
Li, X. H.; Liu, C.; Feng, S. P.; Fang, N. X. Joule 2019, 3, 290.
Outlines

/