Article

Boosting the Supercapacitance Performance of Mesostructured Carbon Nanocages by Enlarging Pore Sizes via Carbothermal Reduction

  • Jia Liu ,
  • Guanghai Chen ,
  • Yiqun Chen ,
  • Jietao Jiang ,
  • Xiao Xiao ,
  • Qiang Wu ,
  • Lijun Yang ,
  • Xizhang Wang ,
  • Zheng Hu
Expand
  • Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
Dedicated to the 90th anniversary of Acta Chimica Sinica.
; Tel.: +86-25-89681910

Received date: 2023-03-08

  Online published: 2023-04-27

Supported by

National Key Research and Development Program of China(2018YFA0209100); National Key Research and Development Program of China(2021YFA1500900); National Natural Science Foundation of China(21972061); National Natural Science Foundation of China(21832003); National Natural Science Foundation of China(52071174)

Abstract

Electrical double layer capacitors (EDLCs) with the merits of high power density and fast charging/discharging have been widely used in the different fields, e.g. green energy and national defense, which is however limited by the unsatisfied energy density. The factors dominating the EDLCs performance mainly include the specific surface area, pore structure (i.e., ion transport channel), conductivity and wettability of the electrode material, the working voltage window and ionic conductivity of the electrolyte. In recent years, mesostructured carbon nanocage have been attracting more and more attention as advanced platform materials for energy storage and conversion, which have a particularly broad application prospect in the field of supercapacitors. Based on the rule of solubility product and the carbothermal reduction method, herein we have developed a new route to regulate the pore size distribution of hierarchical carbon nanocages (hCNCs) and effectively increased the number and size of the channels across the shells of hCNCs. The optimized sample exhibits excellent supercapacitive performances in KOH and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) electrolytes: the specific capacitance of 255 and 220 F•g-1 at 1 A•g-1 (50% and 25.7% higher than those of the pristine hCNCs); 179 and 129 F•g-1 at a high current density of 200 A•g-1 (68.9% and 33.0% higher than those of the pristine hCNCs); energy density of 12.8 Wh•kg-1@0.3 kW•kg-1 and 116 Wh•kg-1@0.97 kW•kg-1, respectively. Such excellent electrochemical performances can be attributed to the introduction of small-sized mesopores and the increase in number and size of micropores on the shells of hCNCs, which much increases the specific surface area and benefits the rapid transport of ions through the microchannels on the nanocage shells. This study provides a new thought to develop the advanced supercapacitor electrode materials.

Cite this article

Jia Liu , Guanghai Chen , Yiqun Chen , Jietao Jiang , Xiao Xiao , Qiang Wu , Lijun Yang , Xizhang Wang , Zheng Hu . Boosting the Supercapacitance Performance of Mesostructured Carbon Nanocages by Enlarging Pore Sizes via Carbothermal Reduction[J]. Acta Chimica Sinica, 2023 , 81(7) : 709 -716 . DOI: 10.6023/A23030073

References

[1]
Wu J. Chem. Rev. 2022, 122, 10821.
[2]
Wang G.; Zhang L.; Zhang J. Chem. Soc. Rev. 2012, 41, 797.
[3]
Zhao J.; Gong J.; Li Y.; Cheng K.; Ye K.; Zhu K.; Yan J.; Cao D.; Wang G. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[3]
(赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[4]
Shao H.; Wu Y. C.; Lin Z.; Taberna P. L.; Simon P. Chem. Soc. Rev. 2020, 49, 3005.
[5]
Wu Z.; Li L.; Yan J. M.; Zhang X. B. Adv. Sci. 2017, 4, 1600382.
[6]
Liu C.; Yan X.; Hu F.; Gao G.; Wu G.; Yang X. Adv. Mater. 2018, 30, 1705713.
[7]
Zhong M.; Zhang M.; Li X. Carbon Energy 2022, 4, 950.
[8]
Yan J.; Wang Q.; Wei T.; Fan Z. Adv. Energy Mater. 2014, 4, 1300816.
[9]
Das S. K.; Pradhan L.; Jena B. K.; Basu S. Carbon 2023, 201, 49.
[10]
You Z.; Zhao L.; Zhao K.; Liao H.; Wen S.; Xiao Y.; Cheng B.; Lei S. Appl. Surf. Sci. 2023, 607, 155080.
[11]
Beguin F.; Presser V.; Balducci A.; Frackowiak E. Adv. Mater. 2014, 26, 2219.
[12]
Frackowiak E. Phys. Chem. Chem. Phys. 2007, 9, 1774.
[13]
Li Y.; Li Z.; Shen P. K. Adv. Mater. 2013, 25, 2474.
[14]
Dubey P.; Maheshwari P. H.; Mansi; Shrivastav V.; Sundriyal S. J. Energy Storage 2023, 58, 106441.
[15]
Yin J.; Zhang W.; Alhebshi N. A.; Salah N.; Alshareef H. N. Small Methods 2020, 4, 1900853.
[16]
Zhang R.; Jing X.; Chu Y.; Wang L.; Kang W.; Wei D.; Li H.; Xiong S. J. Mater. Chem. A 2018, 6, 17730.
[17]
Hor A. A.; Hashmi S. A. Electrochim. Acta 2020, 356, 136826.
[18]
Xie K.; Qin X.; Wang X.; Wang Y.; Tao H.; Wu Q.; Yang L.; Hu Z. Adv. Mater. 2012, 24, 347.
[19]
Lyu Z.; Xu D.; Yang L.; Che R.; Feng R.; Zhao J.; Li Y.; Wu Q.; Wang X.; Hu Z. Nano Energy 2015, 12, 657.
[20]
Bu Y.; Sun T.; Cai Y.; Du L.; Zhuo O.; Yang L.; Wu Q.; Wang X.; Hu Z. Adv. Mater. 2017, 29, 1700470.
[21]
Zhao J.; Lai H.; Lyu Z.; Jiang Y.; Xie K.; Wang X.; Wu Q.; Yang L.; Jin Z.; Ma Y.; Liu J.; Hu Z. Adv. Mater. 2015, 27, 3541.
[22]
Li G.; Mao K.; Liu M.; Yan M.; Zhao J.; Zeng Y.; Yang L.; Wu Q.; Wang X.; Hu Z. Adv. Mater. 2020, 32, 2004632.
[23]
Fu X. C. College Chemistry, High Education Press, Beijing, 1999, p. 434. (in Chinese)
[23]
(傅献彩, 大学化学, 高等教育出版社, 北京, 1999, p. 434.)
[24]
Schwertmann U. Plant Soil 1991, 130, 1.
[25]
Wu Q.; Yang L.; Wang X.; Hu Z. Adv. Mater 2020, 32, 1904177.
[26]
Tang G.-a.; Mao K.; Zhang J.; Lyu P.; Cheng X.; Wu Q.; Yang L.; Wang X.; Hu Z. Acta Chim. Sinica 2020, 78, 444. (in Chinese)
[26]
(汤功奥, 毛鲲, 张静, 吕品, 程雪怡, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2020, 78, 444.)
[27]
Wu Q.; Yang L.; Wang X.; Hu Z. Sci. China Chem. 2020, 63, 665.
[28]
Dresselhaus M. S.; Jorio A.; Hofmann M.; Dresselhaus G.; Saito R. Nano Lett. 2010, 10, 751.
[29]
Ferrari A. C.; Basko D. M. Nat. Nanotechnol. 2013, 8, 235.
[30]
Jiang Y.; Yang L.; Sun T.; Zhao J.; Lyu Z.; Zhuo O.; Wang X.; Wu Q.; Ma J.; Hu Z. ACS Catal. 2015, 5, 6707.
[31]
Maslova O. A.; Ammar M. R.; Guimbretière G.; Rouzaud J. N.; Simon P. Phys. Rev. B 2012, 86, 134205.
[32]
Yazyev O. V.; Louie S. G. Nat. Mater. 2010, 9, 806.
[33]
Xu Z.; Tian D.; Sun Z.; Zhang D.; Zhou Y.; Chen W.; Deng H. Colloids Surf., A 2019, 565, 180.
Outlines

/