Communication

Gold/Iridium Catalyzed Alkynylamide Cyclization/Asymmetric Allylic Benzylation Cascade Reaction

  • Rui-Xiang Wang ,
  • Qing-Ru Zhao ,
  • Qing Gu ,
  • Shu-Li You
Expand
  • a Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.
†These authors contributed equally to this work.

Received date: 2023-03-30

  Online published: 2023-05-09

Supported by

National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22031012); National Natural Science Foundation of China(22071260)

Abstract

Asymmetric allylic substitution reactions involving benzyl nucleophilic reagents can rapidly construct chiral molecules containing benzyl fragments, which has attracted widespread attention from organic chemists. Formal asymmetric allylic benzylation reactions have been achieved by utilizing methylene oxazole as an equivalent of benzyl nucleophile. However, the development of highly efficient asymmetric allylic benzylation reactions remains a great challenge mainly due to the poor stability and synthetic difficulty of methylene oxazole. In this work, we have developed gold- and iridium- catalyzed alkynylamide cyclization/asymmetric allylic benzylation cascade reactions. In the presence of gold-carbene complex (Au1) and the combination of [Ir(cod)Cl]2 and (Sa)-Carreira ligand, a wide range of enantioenriched oxazole derivatives, bearing a benzylic stereogenic center, were obtained in 49%~87% yields with 98%~>99% ee. A general procedure is described as the following: To a dried Schlenk tube were added [Ir(cod)Cl]2 (5.4 mg, 0.008 mmol, 4 mol%), (Sa)-L1 (16.2 mg, 0.032 mmol, 16 mol%) and 1,2-dichloroethane (1 mL) under argon atmosphere. The mixture was stirred at room temperature for 15 minutes to give a chiral iridium complex solution. Under an argon atmosphere, alkynylamide (0.2 mmol, 1.0 equiv.), allyl alcohol (0.4 mmol, 2.0 equiv.), Au1 (0.02 mmol, 12.4 mg, 10 mol%), Fe(OTf)2 (0.2 mmol, 70.6 mg, 1.0 equiv.) and 3 Å molecular sieves (80.0 mg) were added to another dry Schlenk tube, and then the above-prepared iridium catalyst was added. The reaction mixture was stirred at 40 ℃ until the starting materials were consumed (monitored by thin layer chromatography, TLC). The mixture was quenched with water (5 mL), and extracted with dichloromethane (5 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered, and then concentrated in vacuo to afford the crude product. The residue was purified by column chromatography (V(petroleum ether)/V(ethyl acetate)=15/1 or 10/1) to afford product 3.

Cite this article

Rui-Xiang Wang , Qing-Ru Zhao , Qing Gu , Shu-Li You . Gold/Iridium Catalyzed Alkynylamide Cyclization/Asymmetric Allylic Benzylation Cascade Reaction[J]. Acta Chimica Sinica, 2023 , 81(5) : 431 -434 . DOI: 10.6023/A23030103

References

[1]
(a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[1]
(b) Lu, Z.; Ma, S. Angew. Chem. Int. Ed. 2008, 47, 258.
[1]
(c) Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
[1]
For a book, see:
[1]
(d) Transition Metal Catalyzed Enantioselective Allylic Substitution: Organic Synthesis, Ed.: Kazmaier, U., Springer,eidelberg, 2012.
[2]
(a) Heterocycles in Natural Product Synthesis, Eds.: Majumdar, K. C.; Chattopadhyay, S. K., Wiley-VCH,Weinheim, 2011.
[2]
(b) Metalation of Azoles and Related Five-Membered Ring Heterocycles: Topics in Heterocyclic Chemistry, Vol. 29, Ed.: Gribble, G. W., Springer, Heidelberg, 2012.
[2]
(c) Heteroocyclic Chemistry in Drug Discovery, Ed.: Li, J.-J., Wiley, Hoboken, 2013.
[2]
(d) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
[2]
(e) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[3]
(a) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
[3]
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056.
[3]
(c) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439.
[4]
(a) Sha, S.-C.; Jiang, H.; Mao, J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew. Chem. Int. Ed. 2016, 55, 1070.
[4]
(b) Mao, J.; Zhang, J.; Jiang, H.; Bellomo, A.; Zhang, M.; Gao, Z.; Dreher, S. D.; Walsh, P. J. Angew. Chem. Int. Ed. 2016, 55, 2526.
[5]
(a) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837.
[5]
(b) Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 7686.
[5]
(c) Haas, D.; Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540.
[6]
(a) Liu, X.-J.; You, S.-L. Angew. Chem. Int. Ed. 2017, 56, 4002.
[6]
(b) Liu, X.-J.; Zhang, W.-Y.; Zheng, C.; You, S.-L. Angew. Chem. Int. Ed. 2022, e202200164.
[7]
For selected reviews on Ir-catalyzed asymmetric allylic substitution reactions, see: a Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
[7]
(b) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155.
[7]
(c) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
[7]
(d) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
[7]
(e) Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
[7]
(f) R?ssler, S. L.; Petrone, D. A.; Carreira, E. M. Acc. Chem. Res. 2019, 52, 2657.
[7]
(g) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
[8]
(a) Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48.
[8]
(b) Butcher, T. W.; Yang, J. L.; Amberg, W. M.; Watkins, N. B.; Wilkinson, N. D.; Hartwig, J. F. Nature 2020, 583, 548.
[8]
(c) Chen, P.; Li, Y.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Angew. Chem. Int. Ed. 2020, 59, 7083.
[8]
(d) Han, M.; Yang, M.; Wu, R.; Li, Y.; Jia, T.; Gao, Y.; Ni, H.-L.; Hu, P.; Wang, B.-Q.; Cao, P. J. Am. Chem. Soc. 2020, 142, 13398.
[8]
(e) Tu, H.-F.; Yang, P.; Lin, Z.; Zheng, C.; You, S.-L. Nat. Chem. 2020, 12, 838.
[8]
(f) Rossi-Ashton, J. A.; Clarke, A. K.; Donald, J. R.; Zheng, C.; Taylor, R. J. K.; Unsworth, W. P.; You, S.-L. Angew. Chem. Int. Ed. 2020, 59, 7598.
[8]
(g) Wang, J.; Qi, X.; Min, X.-L.; Yi, W.; Liu, P.; He, Y. J. Am. Chem. Soc. 2021, 143, 10686.
[8]
(h) Davis, C. R.; Luvaga, I. K.; Ready, J. M.; J. Am. Chem. Soc. 2021, 143, 4921.
[8]
(i) Jiang, R.; Ding, L.; Zheng, C.; You, S.-L. Science 2021, 371, 380.
[8]
(j) Crisenza, G. E. M.; Faraone, A.; Gandolfo, E.; Mazzarella, D.; Melchiorre, P. Nat. Chem. 2021, 13, 575.
[8]
(k) Xiao, L.; Wei, L.; Wang, C.-J. Angew. Chem. Int. Ed. 2021, 60, 24930.
[8]
(l) Peng, Y.; Huo, X.; Luo, Y.; Wu, L.; Zhang, W. Angew. Chem. Int. Ed. 2021, 60, 24941.
[8]
(m) Zhang, M.-M.; Chen, P.; Xiong, W.; Hui, X.-S.; Lu, L.-Q.; Xiao, W.-J. CCS Chem. 2021, 3, 3383.
[8]
(n) Deng, Y.; Liang, X.; Wei, K.; Yang, Y.-R. J. Am. Chem. Soc. 2021, 143, 20622.
[8]
(o) Zhao, Q.-R.; Jiang, R.; You, S.-L. Acta Chim. Sinica 2021, 79, 1107. (in Chinese)
[8]
(赵庆如, 蒋茹, 游书力, 化学学报, 2021, 79, 1107.)
[8]
(p) Yang, P.-S.; Liu, C.-X.; Zhang, W.-W.; You, S.-L. Acta Chim. Sinica 2021, 79, 742. (in Chinese)
[8]
(杨普苏, 刘晨旭, 张文文, 游书力, 化学学报, 2021, 79, 742.)
[8]
(q) Ding, L.; Song, H.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2022, 144, 4770.
[8]
(r) Liu, X.-J.; Zhang, W.-Y.; Zheng, C.; You, S.-L. Angew. Chem. Int. Ed. 2022, 61, e2022001.
[8]
(s) Moghadam, F. A.; Hicks, E. F.; Sercel, Z. P.; Cusumano, A. Q.; Bartberger, M. D.; Stoltz, B. M. J. Am. Chem. Soc. 2022, 144, 7983.
[8]
(t) Yang, P.; Wang, R.-X.; Cheng, Y.-Z.; Zheng, C.; You, S.-L. Angew. Chem. Int. Ed. 2022, 61, e202213520.
[8]
(u) Yang, W.-L.; Shang, X.-Y.; Luo, X.; Deng, W.-P. Angew. Chem. Int. Ed. 2022, 61, e202203661.
[8]
(v) Jiang, R.; Zhao, Q.-R.; Zheng, C.; You, S.-L. Nat. Catal. 2022, 5, 1089.
[8]
(w) Zhang, J.; Yang, W.-L.; Zheng, H.; Wang, Y.; Deng, W.-P. Angew. Chem. Int. Ed. 2022, 61, e202117079.
[8]
(x) Wu, Z.-H.; Wang, H.-Y.; Yang, H.-L.; Wei, L.-H.; Hayashi, T.; Duan, W.-L. Angew. Chem. Int. Ed. 2022, 61, e202213904.
[8]
(y) Yang, W.-L.; Shang, X.-Y.; Ni, T.; Yan, H.; Luo, X.; Zhen, H.; Li, Z.; Deng, W.-P. Angew. Chem. Int. Ed. 2022, 61, e202210207.
[8]
(z) Fu, C.; Xiong, Q.; Xiao, L.; He, L.; Bai, T.; Zhang, Z.; Dong, X.-Q.; Wang, C.-J. Chin. J. Chem. 2022, 40, 1059.
[8]
(aa) Tang, X.; Su, Z.; Lin, Q.; Lin, L.; Dong, S.; Feng, X. Chin. J. Chem. 2022, 40, 1793.
[8]
(ab) Jia, S.-H.; Chen, S.-Y.; Liu, Z.-S.; Cheng, H.-G.; Zhou, Q.-H. Chin. J. Org. Chem. 2022, 42, 3373. (in Chinese)
[8]
(贾仕虎, 陈思元, 刘泽水, 程鸿刚, 周强辉, 有机化学, 2022, 42, 3373.)
[8]
(ac) Xie, J.-H.; Hou, Y.-M.; Feng, Z.; You, S.-L. Angew. Chem. Int. Ed. 2023, 63, e202216396.
[9]
Liu, X.-J.; Zheng, C.; Yang, Y.-H.; Jin, S.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 10493.
[10]
(a) Seppanen, O.; Aikonen, S.; Muuronen, M.; Alamillo-Ferrer, C.; Bures, J.; Helaja, J. Chem. Commun. 2020, 56, 14697.
[10]
(b) Yang, G.; Ke, Y.-M.; Zhao., Y. Angew. Chem. Int. Ed. 2021, 60, 12775.
[10]
(c) Ma, Y.; Ali, H. S.; Hussein, A. A. Catal. Sci. Technol. 2022, 12, 674.
[11]
(a) Kim, U. B.; Jung, D. J.; Jeon, H. J.; Rathwell, K.; Lee, S. Chem. Rev. 2020, 120, 13382.
[11]
(b) Wei, L.; Wang, C.-J. Chem Catal. 2023, 3, 100455.
Outlines

/