Review

Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters

  • Li Liu ,
  • Gang Zheng ,
  • Guoqiang Fan ,
  • Hongguang Du ,
  • Jiajing Tan
Expand
  • a Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013
    b Beijing University of Chemical Technology, College of Chemistry, Beijing 100029

Received date: 2023-04-06

  Online published: 2023-05-11

Supported by

National Natural Science Foundation of China(21702013); National Natural Science Foundation of China(22271010); Fundamental Research Funds for the Central Universities in BUCT(XK1802-6)

Abstract

In recent years, 4-acyl/carbamoyl/alkoxycarbonyl-substituted Hantzsch esters have been increasingly utilized as a new class of radical precursor reagents, emerging as one of major research topics for synthetic chemists. These compounds can generate the corresponding acyl, carbamoyl, and alkoxycarbonyl radicals under mild conditions through photochemical, electrochemical, or chemical oxidation systems, leading to a wide array of radical addition/coupling reactions. Due to the reducibility of their dihydropyridine skeleton, these radical precursors often exhibit unique reactivities and display good compatibility with transition metal-catalysis and organocatalysis systems. In addition, the reported reaction conditions typically feature for environmental friendliness, highly functional group-tolerance, and biocompatibility, which should have significant research value in the fields of medicinal chemistry and chemical biology. Herein, this review summarizes the research progress of acyl, carbamoyl and alkoxycarbonyl radicals, and focuses on radical generation system, mechanistic underpinnings, as well as the uniqueness and applications of the synthetic strategies with such Hantzsch esters.

Cite this article

Li Liu , Gang Zheng , Guoqiang Fan , Hongguang Du , Jiajing Tan . Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters[J]. Acta Chimica Sinica, 2023 , 81(6) : 657 -668 . DOI: 10.6023/A23040118

References

[1]
Hantzsch, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1637.
[2]
(a) Li, G. X.; Chen, R.; Wu, L.; Fu, Q. Q.; Zhang, X. M.; Tang, Z. Angew. Chem., Int. Ed. 2013, 52, 8432.
[2]
(b) Li, G. X.; Wu, L.; Lv, G.; Li, H. X.; Fu, Q. Q.; Zhang, X. M.; Tang, Z. Chem. Commun. 2014, 50, 6246.
[3]
(a) Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2019, 17, 6936.
[3]
(b) Ye, S. Q.; Wu, J. Acta Chim. Sinica 2019, 77, 814. (in Chinese)
[3]
(叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
[3]
(c) Chen, Y. F.; Zhao, H.; Cheng, D. P.; Li, X. N.; Xu, X. L. Chin. J. Org. Chem. 2020, 40, 1297. (in Chinese)
[3]
(陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40, 1297.)
[3]
(d) Li, T. T.; Cheng, X. K.; Lu, J. M.; Wang, H. F.; Fang, Q.; Lu, Z. Chin. J. Chem. 2022, 40, 1033.
[3]
(e) Huang, W. H.; Cheng, X. Synlett 2017, 28, 148.
[4]
Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y. ChemCatChem 2016, 8, 1028.
[5]
Chen, W. X.; Liu, Z.; Tian, J. Q.; Li, J.; Ma, J.; Cheng, X.; Li, G. G. J. Am. Chem. Soc. 2016, 138, 12312.
[6]
(a) Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 3723.
[6]
(b) Buzzetti, L.; Prieto, A.; Roy, S. R.; Melchiorre, P. Angew. Chem., Int. Ed. 2017, 56, 15039.
[6]
(c) Nakajima, K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106.
[6]
(d) Gutiérrez-Bonet, á.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
[7]
(a) van Leeuwen, T.; Buzzetti, L.; Perego, L. A.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 4953.
[7]
(b) Verrier, C.; Alandini, N.; Pezzetta, C.; Moliterno, M.; Buzzetti, L.; Hepburn, H. B.; Vega- Pe?aloza, A.; Silvi, M.; Melchiorre, P. ACS Catal. 2018, 8, 1062.
[8]
Wu, Q.-Y.; Min, Q.-Q.; Ao, G.-Z.; Liu, F. Org. Biomol. Chem. 2018, 16, 6391.
[9]
Gu, F. J.; Huang, W. H.; Liu, X.; Chen, W. X.; Cheng, X. Adv. Synth. Catal. 2018, 360, 925.
[10]
de Assis, F. F.; Huang, X. Q.; Akiyama, M.; Pilli, R. A.; Meggers, E. J. Org. Chem. 2018, 83, 10922.
[11]
Goti, G.; Bieszczad, B.; Vega-Pe?aloza, A.; Melchiorre, P. Angew. Chem. Int. Ed. 2019, 58, 1213.
[12]
(a) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science 2017, 358, 1182.
[12]
(b) Gan, Z.-Y.; Li, G.-Q.; Yang, X.-B.; Yan, Q.-L.; Xu, G.-Y.; Li, G.-Y.; Jiang, Y.-Y.; Yang, D.-S. Sci. China: Chem. 2020, 63, 1652.
[12]
(c) Xie, J.; Jin, H. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
[12]
(d) Wu, X. T.; Zhao, F.; Ji, X. Z.; Huang, H. W. Chin. J. Org. Chem. 2022, 42, 4323. (in Chinese)
[12]
(巫晓婷, 赵峰, 姬小趁, 黄华文, 有机化学, 2022, 42, 4323.)
[12]
(e) Zhang, J.; Chen, Y. Y. Acta Chim. Sinica 2017, 75, 41.
[12]
(张晶, 陈以昀, 化学学报, 2017, 75, 41.)
[12]
(f) Gao, P. P.; Xiao, W. J.; Chen, J. R. Chin. J. Org. Chem. 2022, 42, 3923. (in Chinese)
[12]
(高盼盼, 肖文精, 陈加荣, 有机化学, 2022, 42, 3923.)
[13]
Bieszczad, B.; Perego, L. A.; Melchiorre, P. Angew. Chem. Int. Ed. 2019, 58, 16878.
[14]
Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 3730.
[15]
Zhang, K.; Lu, L.-Q.; Jia, Y.; Wang, Y.; Lu, F.-D.; Pan, F. F.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 13375.
[16]
Zhao, X. X.; Li, B.; Xia, W. J. Org. Lett. 2020, 22, 1056.
[17]
Liu, L.; Jiang, P. X.; Liu, Y. G.; Du, H. G.; Tan, J. J. Org. Chem. Front. 2020, 7, 2278.
[18]
Jiang, P. X.; Liu, L.; Tan, J. J.; Du, H. G. Org. Biomol. Chem. 2021, 19, 4487.
[19]
(a) Lau, J. L.; Dunn, M. K. Bioorg. Med. Chem. 2018, 26, 2700.
[19]
(b) Guo, Y. F.; Zhuang, Z.; Liu, Y. G.; Yang, X.; Tan, C.; Zhao, X. W.; Tan, J. J. Coord. Chem. Rev. 2022, 463, 214525.
[20]
Liu, L.; Deng, Z. K.; Xu, K.; Jiang, P. X.; Du, H. G.; Tan, J. J. Org. Lett. 2021, 23, 5299.
[21]
Byun, Y.; Moon, J.; An, W.; Mishra, N. K.; Kim, H. S.; Ghosh, P.; Kim, I. S. J. Org. Chem. 2021, 86, 12247.
[22]
Zeng, F.-L.; Xie, K.-C.; Liu, Y.-T.; Wang, H.; Yin, P.-C.; Qu, L.-B.; Chen, X.-L.; Yu, B. Green Chem. 2022, 24, 1732.
[23]
Pálv?lgyi, á. M.; Ehrschwendtner, F.; Schnürch, M.; Bica-Schr?der, K. Org. Biomol. Chem. 2022, 20, 7245.
[24]
(a) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142, 5461.
[24]
(b) Hota, S, K.; Panda, S. P.; Das, S.; Mahapatra, S. K.; Roy, L.; Sarkar, S. D.; Murarka, S. J. Org. Chem. 2023, 88, 2543.
[24]
(c) Choi, W.; Kim, M.; Lee, K.; Park, S.; Hong, S. Org. Lett. 2022, 24, 9452.
[25]
Kim, I.; Park, S.; Hong, S. Org. Lett. 2020, 22, 8730.
[26]
Lipp, A.; Badir, S. O.; Dykstra, R.; Gutierrez, O.; Molander, G. A. Adv. Synth. Catal. 2021, 363, 3507.
[27]
(a) Fan, R.; Tan, C.; Liu, Y. G.; Wei, Y.; Zhao, X. W.; Liu, X. Y.; Tan, J. J.; Yoshida, H. Chin. Chem. Lett. 2021, 32, 299.
[27]
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[27]
(c) Wang, J.; Sánchez-Roselló, M.; Ace?a, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[28]
(a) Wang, H. Q.; Xu, K. Chin. J. Org. Chem. 2022, 42, 1260. (in Chinese)
[28]
(王会巧, 徐坤, 有机化学, 2022, 42, 1260.)
[28]
(b) Wang, H. Q.; Xu, K. Chin. J. Org. Chem. 2023, 43, 789. (in Chinese)
[28]
(王会巧, 徐坤, 有机化学, 2023, 43, 789.)
[29]
Luo, X. S.; Wang, P. Org. Lett. 2021, 23, 4960.
[30]
(a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, Weinheim, 2003.
[30]
(b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
[30]
(c) Brown, D. G.; Bostr?m, J. J. Med. Chem. 2016, 59, 4443.
[31]
Alandini, N.; Buzzetti, L.; Favi, G.; Schulte, T.; Candish, L.; Collins, K. D.; Melchiorre, P. Angew. Chem., Int. Ed. 2020, 59, 5248.
[32]
Cardinale, L.; Konev, M. O.; von Wangelin, A. J. Chem.-Eur. J. 2020, 26, 8239.
[33]
Cardinale, L.; Schmotz, M. W. S.; Konev, M. O.; von Wangelin, A. J. Org. Lett. 2022, 24, 506.
[34]
Matsuo, B. T.; Oliveira, P. H. R.; Correia, J. T. M.; Paix?o, M. W. Org. Lett. 2021, 23, 6775.
[35]
(a) Henninot, A.; Collins, J. C.; Nuss, J. M. J. Med. Chem. 2018, 61, 1382.
[35]
(b) Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
[35]
(c) Peng, X.; Xu, K.; Zhang, Q.; Liu, L.; Tan, J. J. Trends in Chemistry 2022, 4, 643.
[36]
Wang, S. Y.; Zhou, Q. Q.; Zhang, X. H.; Wang, P. Angew. Chem., Int. Ed. 2022, 61, e202111388.
[37]
Wei, Y. L.; Ben-zvi, B.; Diao, T. N. Angew. Chem. Int. Ed. 2021, 60, 9433.
[38]
Wei, Y. L.; Lam, J.; Diao, T. N. Chem. Sci. 2021, 12, 11414.
Outlines

/