Room Temperature Synthesis and Near-infrared Fluorescence Performance Optimization of Ag2Se@Ag2S Core-shell Quantum Dots
Received date: 2023-04-11
Online published: 2023-05-11
Supported by
National Natural Science Foundation of China(52273110); National Natural Science Foundation of China(21975191); Natural Science Foundation of Hubei Province(2021CFB299)
Ag2Se quantum dots (QDs) is a narrow band-gap (ca. 0.15 eV) nanomaterial, which exhibits great potential in near-infrared (NIR) fluorescence emission. However, the bad photoluminescence (PL) performance caused by defects in QDs has limited its application greatly. It is an effective way to improve the photoluminescence performance of Ag2Se QDs by growing a wide band gap inorganic shell to eliminate surface defects. For Ag2Se QDs, Ag2S is an ideal shell due to its wider bandgap (ca. 1 eV) and similar lattice constants (0.488 nm for cubic Ag2S and 0.499 nm for cubic Ag2Se). However, the precise preparation of Ag2Se@Ag2S core-shell QDs at room temperature remains a challenge. In this study, oil-soluble and water-soluble Ag2Se@Ag2S core-shell QDs were synthesized by colloidal atomic layer deposition (c-ALD) and one-pot aqueous phase synthesis at room temperature, respectively. The NIR fluorescence properties of water-soluble Ag2Se@Ag2S core-shell QDs were optimized by regulating ligand chain length. In c-ALD, the oil-soluble Ag2Se@Ag2S core-shell QDs were prepared with 1-dodecanethiol (DDT) coated Ag2Se QDs as seeds, oleamine (OAM) coordinated Ag (OAM-Ag) and Na2S as shell precursors, the resultant product showed no fluorescence emission. After high temperature annealing, the fluorescence emission of this oil-soluble Ag2Se@Ag2S core-shell QDs could not be recovered. Subsequently, water-soluble Ag2Se@Ag2S core-shell QDs with enhanced NIR fluorescence emission at 1270 nm were prepared by using mercaptocarboxylic (HS-(CH2)x-COOH) coordinated Ag2Se QDs as seeds, (HS-(CH2)x-COOH) coordinated Ag+ and Na2S as shell precursors in one-pot water phase synthesis. By changing the chain length (x=2, 5, 10, 13) of HS-(CH2)x -COOH ligand, it is found that the water-soluble Ag2Se@Ag2S core-shell QDs which took medium chain length (x=10) 11-mercaptoundecanoic acid (MUA) as the ligand exhibited the strongest fluorescence emission. This work provides a reference for the preparation of Ag2Se@Ag2S core-shell QDs at room temperature.
Wenshan Zheng , Guanbin Gao , Hao Deng , Taolei Sun . Room Temperature Synthesis and Near-infrared Fluorescence Performance Optimization of Ag2Se@Ag2S Core-shell Quantum Dots[J]. Acta Chimica Sinica, 2023 , 81(7) : 763 -770 . DOI: 10.6023/A23040128
[1] | Lu H.; Carroll G. M.; Neale N. R.; Beard M. C. ACS Nano 2019, 13, 939. |
[2] | Lian W.; Fang Z.; Tu D.; Li J.; Han S.; Li R.; Shang X.; Chen X. Acta Chim. Sinica 2022, 80, 625. (in Chinese) |
[2] | (廉纬, 方泽铠, 涂大涛, 李嘉尧, 韩思远, 李仁富, 商晓颖, 陈学元, 化学学报, 2022, 80, 625.) |
[3] | Chen S.; Tang T.; Huang B.; Liu F.; Cui R.; Zhang M.; Sun T. ACS App. Nano Mater. 2022, 5, 3415. |
[4] | Li C.; Wang Q. ACS Nano 2018, 12, 9654. |
[5] | Pu C.; Qin H.; Gao Y.; Zhou J.; Wang P.; Peng X. J. Am. Chem. Soc. 2017, 139, 3302. |
[6] | Pan L. J.; Tu J. W.; Yang L. L.; Tian Z. Q.; Zhang Z. L. Adv. Optical Mater. 2022, 10, 2102806. |
[7] | Yu M.; Yang X.; Zhang Y.; Yang H.; Huang H.; Wang Z.; Dong J.; Zhang R.; Sun Z.; Li C.; Wang Q. Small 2021, 17, e2006111. |
[8] | Yang H.; Huang H.; Ma X.; Zhang Y.; Yang X.; Yu M.; Sun Z.; Li C.; Wu F.; Wang Q. Adv. Mater. 2021, 33, e2103953. |
[9] | Yang H.; Li R.; Zhang Y.; Yu M.; Wang Z.; Liu X.; You W.; Tu D.; Sun Z.; Zhang R.; Chen X.; Wang Q. J. Am. Chem. Soc. 2021, 143, 2601. |
[10] | Sun Z.; Liu C.; Yang H.; Yang X.; Zhang Y.; Lin H.; Li Y.; Wang Q. Nano Res. 2022, 15, 8555. |
[11] | Eagle F. W.; Park N.; Cash M.; Cossairt B. M. ACS Energy Lett. 2021, 6, 977. |
[12] | Zhang Y.; Yang H.; An X.; Wang Z.; Yang X.; Yu M.; Zhang R.; Sun Z.; Wang Q. Small 2020, 16, e2001003. |
[13] | Jiang P.; Zhu C.; Zhu D.; Zhang Z.; Zhang G.; Pang D. J. Mater. Chem. C 2015, 3, 964. |
[14] | Tang S.; He C.; Li D.; Cai W.; Fan L.; Li Y. J. Mater. Sci. 2018, 53, 11355. |
[15] | Ithurria S.; Talapin D. V. J. Am. Chem. Soc. 2012, 134, 18585. |
[16] | Nag A.; Kovalenko M. V.; Lee J. S.; Liu W.; Spokoyny B.; Talapin D. V. J. Am. Chem. Soc. 2011, 133, 10612. |
[17] | Sayevich V.; Robinson Z. L.; Kim Y.; Kozlov O. V.; Jung H.; Nakotte T.; Park Y. S.; Klimov V. I. Nat. Nanotechnol. 2021, 16, 673. |
[18] | Sahu A.; Qi L.; Kang M.; Deng D.; Norris D. J. Am. Chem. Soc. 2011, 133, 6509. |
[19] | Sagar L. K.; Walravens W.; Zhao Q.; Vantomme A.; Geiregat P.; Hens Z. Chem. Mater. 2016, 28, 6953. |
[20] | Yu M.; Zhang Z.; Zhu G.; Gu Z.; Duan Y.; Yu L.; Gao G.; Sun T. Acta Chim. Sinica 2021, 79, 1281. (in Chinese) |
[20] | (余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.) |
/
〈 |
|
〉 |