Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation★
Received date: 2023-04-17
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(21991112); National Natural Science Foundation of China(21702134); National Natural Science Foundation of China(21772119)
Chiral C—X (X=N, O, P, B, F, etc.) bond fragments are present in a wide variety of natural and pharmaceutically active molecules. Transition metal-catalyzed asymmetric hydrogenation is one of the most attractive strategies for the synthesis of these chiral compounds. Among the many transition metal catalysts, earth-abundant transition metals (iron, cobalt, nickel, and copper) have been used in asymmetric hydrogenation to replace rare metals (rhodium, ruthenium, iridium and palladium) due to their abundant reserves, low toxicity, and environmental friendliness. At present, this method for the construction of chiral C—X bonds has become a prominent trend in modern organic chemistry. Among them, the development of nickel catalysts has been relatively rapid. Based on this, the article will review the latest research in the preparation of compounds with chiral C—X bonds via nickel-catalyzed asymmetric hydrogenation using hydrogen. It is divided into five sections consisting of the construction of chiral C—N, C—O, C—P, C—B and C—F bonds by nickel-catalyzed asymmetric hydrogenation.
Xinhong Cai , Jianzhong Chen , Wanbin Zhang . Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation★[J]. Acta Chimica Sinica, 2023 , 81(6) : 646 -656 . DOI: 10.6023/A23040140
[1] | Lv, M.; Zhao, Q. CN 115490647A, 2022. |
[2] | Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096. (in Chinese) |
[2] | (刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.) |
[3] | Zhang, L.; Xiao, J.; Wang, Y.; Peng, Y. Acta Chim. Sinica 2022, 80, 1152. (in Chinese) |
[3] | (张崃, 肖检, 王雅雯, 彭羽, 化学学报, 2022, 80, 1152.) |
[4] | Li, Y.; Xu, M.-H. Acta Chim. Sinica 2021, 79, 1345. (in Chinese) |
[4] | (李翼, 徐明华, 化学学报, 2021, 79, 1345.) |
[5] | Shang, Y.; Xiao, J.; Wang, Y.; Peng, Y. Acta Chim. Sinica 2021, 79, 1303. (in Chinese) |
[5] | (尚阳, 肖检, 王雅雯, 彭羽, 化学学报, 2021, 79, 1303.) |
[6] | Zhao, F.; Ye, W.; Wang, K. Chin. J. Org. Chem. 2021, 41, 2650. (in Chinese) |
[6] | (赵芳, 叶文静, 王凯, 有机化学, 2021, 41, 2650.) |
[7] | Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443. |
[8] | Liu, C.; Liu, Q. Chin. J. Org. Chem. 2022, 42, 3213. (in Chinese) |
[8] | (刘晨光, 刘强, 有机化学, 2022, 42, 3213.) |
[9] | Wu, L.; Wei, H.; Shen, J.; Chen, J.; Zhang, W. Acta Chim. Sinica 2021, 79, 1331. (in Chinese) |
[9] | (吴良, 魏翰林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.) |
[10] | Dai, Z.; Zhang, X.; Yin, Q. Chin. J. Org. Chem. 2022, 42, 2261. (in Chinese) |
[10] | (代增进, 张绪穆, 殷勤, 有机化学, 2022, 42, 2261.) |
[11] | Wen, J.; Wang, F.; Zhang, X. Chem. Soc. Rev. 2021, 50, 3211. |
[12] | Dong, Z.; Li, Y.; Yu, S.; Sun, G.; Gao, J. Chin. Chem. Lett. 2012, 23, 533. |
[13] | Li, Y.; Yu, S.; Shen, W.; Gao, J. Acc. Chem. Res. 2015, 48, 2587. |
[14] | Yang, P.; Xu, H.; Zhou, J. Angew. Chem. Int. Ed. 2014, 53, 12210. |
[15] | Xu, H.; Yang, P.; Chuanprasit, P.; Hirao, H.; Zhou, J. Angew. Chem. Int. Ed. 2015, 54, 5112. |
[16] | Yang, P.; Lim, L.; Chuanprasit, P.; Hirao, H.; Zhou, J. Angew. Chem. Int. Ed. 2016, 55, 12083. |
[17] | Zhao, X.; Xu, H.; Huang, X.; Zhou, J. Angew. Chem. Int. Ed. 2019, 58, 292. |
[18] | Zhou, J.; Guo, S.; Zhao, X.; Chi, Y. Chem. Commun. 2021, 57, 11501. |
[19] | Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2019, 58, 7329. |
[20] | Liu, Y.; Yi, Z.; Tan, X.; Dong, X.-Q.; Zhang, X. iScience 2019, 19, 63. |
[21] | Zhao, X.; Zhang, F.; Liu, K.; Zhang, X.; Lv, H. Org. Lett. 2019, 21, 8966. |
[22] | Liu, G.; Zhang, X.; Wang, H.; Cong, H.; Zhang, X.; Dong, X.-Q. Chem. Commun. 2020, 56, 4934. |
[23] | Liu, D.; Li, B.; Chen, J.; Gridnev, I. D.; Yan, D.; Zhang, W. Nat. Commun. 2020, 11, 5935. |
[24] | Li, B.; Liu, D.; Hu, Y.; Chen, J.; Zhang, Z.; Zhang, W. Eur. J. Org. Chem. 2021, 2021, 3421. |
[25] | Zhao, Y.; Ding, Y.-X.; Wu, B.; Zhou, Y.-G. J. Org. Chem. 2021, 86, 10788. |
[26] | Li, B.; Chen, J.; Liu, D.; Gridnev, I. D.; Zhang, W. Nat. Chem. 2022, 14, 920. |
[27] | Gao, W.; Lv, H.; Zhang, T.; Yang, Y.; Chung, L. W.; Wu, Y.-D.; Zhang, X. Chem. Sci. 2017, 8, 6419. |
[28] | Li, X.; You, C.; Li, S.; Lv, H.; Zhang, X. Org. Lett. 2017, 19, 5130. |
[29] | Long, J.; Gao, W.; Guan, Y.; Lv, H.; Zhang, X. Org. Lett. 2018, 20, 5914. |
[30] | Shevlin, M.; Friedfeld, M.; Sheng, H.; Pierson, N.; Hoyt, J.; Campeau, L.; Chirik, P. J. Am. Chem. Soc. 2016, 138, 3562. |
[31] | Hu, Y.; Chen, J.; Li, B.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2020, 59, 5371. |
[32] | Liu, Y.; Yi, Z.; Yang, X.; Wang, H.; Yin, C.; Wang, M.; Dong, X.-Q.; Zhang, X. ACS Catal. 2020, 10, 11153. |
[33] | Sudhakaran, S.; Shinde, P. G.; Aratikatla, E. K.; Kaulage, S. H.; Rana, P.; Parit, R. S.; Kavale, D. S.; Senthilkumar, B.; Punji, B. Chem. Asian J. 2022, 17, e202101208. |
[34] | Hamada, Y.; Koseki, Y.; Fujii, T.; Maeda, T.; Hibino, T.; Makino, K. Chem. Commun. 2008, 6206. |
[35] | Hibino, T.; Makino, K.; Sugiyama, T.; Hamada, Y. ChemCatChem 2009, 1, 237. |
[36] | Wang, F.; Tan, X.; Wu, T.; Zheng, L.-S.; Chen, G.-Q.; Zhang, X. Chem. Commun. 2020, 56, 15557. |
[37] | Deng, C.-Q.; Liu, J.; Luo, J.-H.; Gan, L.-J.; Deng, J.; Fu, Y. Angew. Chem. Int. Ed. 2022, 61, e202115983. |
[38] | Deng, C.-Q.; Deng, J. Org. Lett. 2022, 24, 2494. |
[39] | Xiao, G.; Xie, C.; Guo, Q.; Zi, G.; Hou, G.; Huang, Y. Org. Lett. 2022, 24, 2722. |
[40] | Wei, H.; Chen, H.; Chen, J.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2023, 62, e202214990. |
[41] | Yang, X.; Liu, G.; Xiang, X.; Xie, D.; Han, J.; Han, Z.; Dong, X.-Q. Org. Lett. 2023, 25, 738. |
[42] | Han, Z.; Liu, G.; Zhang, X.; Li, A.; Dong, X.-Q.; Zhang, X. Org. Lett. 2019, 21, 3923. |
[43] | Guan, Y.-Q.; Han, Z.; Li, X.; You, C.; Tan, X.; Lv, H.; Zhang, X. Chem. Sci. 2019, 10, 252. |
/
〈 |
|
〉 |