Communication

Introduction of Zn2+ Promotes the Catalytic Performance of Pd-based Catalyst for CO Esterification Reaction via Electron Transfer

  • Xun Liu ,
  • Hui-Bo Jiang ,
  • Kai-Qiang Jing ,
  • Zhong-Ning Xu ,
  • Guo-Cong Guo
Expand
  • a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2023-03-10

  Online published: 2023-05-19

Supported by

National Key Research and Development Program of China(2021YFB3801600); National Key Research and Development Program of China(2017YFA0700103); National Key Research and Development Program of China(2018YFA0704500); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA29030600); National Natural Science Foundation of China(22172171); Natural Science Foundation of Fujian Province(2022H0039); Grant YLU-DNL Fund(2022010)

Abstract

Coal to ethylene glycol is a crucial route in modern coal chemical industry, and the CO esterification reaction, which synthesizes dimethyl oxalate (DMO), is a key step in this process. While supported Pd-based catalysts are effective for this reaction, research on support effect is limited. In this study, we employed a two-dimensional material CoAl-LDH (layered double hydroxides) as a catalytic support to investigate the support effect for the CO esterification reaction. We prepared various LDH supports with different Co/Al molar ratios and loaded Pd metal using the ALD (atomic layer deposition) method. The successful preparation of LDH carriers was confirmed by TEM (transmission electron microscopy), XRD (X-ray diffraction), and Fourier infrared spectroscopy characterizations. The catalysts were evaluated for their catalytic performance in the CO esterification to DMO reaction. Based on the results, the support with a Co/Al molar ratio of 1∶1 was chosen for further study, as it exhibited the highest Lewis basicity in CO2-TPD (temperature programmed desorption) tests. We then prepared the Pd/ZnCoAl-LDH catalyst by doping Zn2+ into the selected CoAl-LDH support. Compared to the Pd/CoAl-LDH catalyst, the Pd/ZnCoAl-LDH catalyst exhibited better catalytic activity for the CO esterification to DMO reaction, with the conversion of CO increasing from 51.5% to 61.8%. XPS (X-ray photoelectron spectroscopy) characterization results indicated that the introduction of Zn2+ promoted electron transfer between the Pd active species and ZnCoAl-LDH, which is responsible for the higher activity of the Pd/ZnCoAl-LDH catalyst. In situ DRIRS (diffuse reflectance infrared spectroscopy) experiments demonstrated a red-shift in the adsorption peak of CO, which further confirmed the increase in electron density around the Pd active species. In addition, the 100 h stability test results showed that the introduction of Zn2+ can also enhance the stability of the catalyst. After 100 h of evaluation, the catalytic activity of Pd/CoAl-LDH catalyst decreased significantly, while the activity of Pd/ZnCoAl-LDH remained basically unchanged. This study focused on the structural design for promoting catalytic activity through enhanced Lewis-basicity, providing a reference for improving the performance of Pd-based heterogeneous catalysts.

Cite this article

Xun Liu , Hui-Bo Jiang , Kai-Qiang Jing , Zhong-Ning Xu , Guo-Cong Guo . Introduction of Zn2+ Promotes the Catalytic Performance of Pd-based Catalyst for CO Esterification Reaction via Electron Transfer[J]. Acta Chimica Sinica, 2023 , 81(7) : 691 -696 . DOI: 10.6023/A23030074

References

[1]
Zhao T. J.; Chen D.; Dai Y. C.; Yuan W. K.; Holmen A. Ind. Eng. Chem. Res. 2004, 43, 4595.
[2]
Hu Q.; Fan G.; Yang L.; Li F. ChemCatChem 2014, 6, 3501.
[3]
He Z.; Lin H.; He P.; Yuan Y. J. Catal. 2011, 277, 54.
[4]
Yue H.; Zhao Y.; Ma X.; Gong J. Chem. Soc. Rev. 2012, 41, 4218.
[5]
Donald M.; Fenton P. J. S. J. Org. Chem. 1973, 39 701.
[6]
Peng S.-Y.; Xu Z.-N.; Chen Q.-S.; Wang Z.-Q.; Chen Y.; Lv D.-M.; Lu G.; Guo G.-C. Catal. Sci. Technol. 2014, 4, 1925.
[7]
Peng S.-Y.; Xu Z.-N.; Chen Q.-S.; Chen Y.-M.; Sun J.; Wang Z.-Q.; Wang M.-S.; Guo G.-C. Chem. Commun. 2013, 49, 5718.
[8]
Peng S.-Y.; Xu Z.-N.; Chen Q.-S.; Wang Z.-Q.; Lv D.-M.; Sun J.; Chen Y.; Guo G.-C. ACS Catal. 2015, 5, 4410.
[9]
Hu C.; Jing K.-Q.; Lin X.-Q.; Sun J.; Xu Z.-N.; Guo G.-C. Catal. Lett. 2021, 22, 503.
[10]
Liu L.; Lin Z.; Lin S.; Chen Y.; Zhang L.; Chen S.; Zhang X.; Lin J.; Zhang Z.; Wan S.; Wang Y. J. Energy Chem. 2021, 58, 564.
[11]
Benavidez A. D.; Kovarik L.; Genc A.; Agrawal N.; Larsson E. M.; Hansen T. W.; Karim A. M.; Datye A. K. ACS Catal. 2012, 2, 2349.
[12]
Thomas W.; Hansen A. T. D.; Sivakumar R.; Datye A. K. Acc. Chem. Res. 2013, 468, 1720.
[13]
Zhang K.; Zhang H.; Feng X.; Wang Y.; Wang G.; Zhu X.; Li C. Catal. Lett. 2022, 153, 921.
[14]
Jin E.; Zhang Y.; He L.; Harris H. G.; Teng B.; Fan M. Applied Catalysis A: General. 2014, 476, 158.
[15]
Liu L.; Corma A. Chem. Rev. 2018, 118, 4981.
[16]
Jing K. Q.; Fu Y. Q.; Wang Z. Q.; Chen Z. N.; Tan H. Z.; Sun J.; Xu Z. N.; Guo G. C. Nanoscale 2020, 12, 14825.
[17]
Zheng J.; Lin H.; Wang Y.-N.; Zheng X.; Duan X.; Yuan Y. J. Catal. 2013, 297, 110.
[18]
Jiang H.-B.; Lin S.-S.; Xu Y.-P.; Sun J.; Xu Z.-N.; Guo G.-C. Acta Chim. Sinica 2022, 80, 438. (in Chinese)
[18]
(江辉波, 林珊珊, 徐玉平, 孙径, 徐忠宁, 郭国聪, 化学学报, 2022, 80, 438.)
[19]
Yu J.; Yang Y. S.; Wei M. Acta Chim. Sinica 2019, 77, 1129. (in Chinese)
[19]
(余俊, 杨宇森, 卫敏, 化学学报, 2019, 77, 1129)
[20]
Cui G.; Meng X.; Zhang X.; Wang W.; Xu S.; Ye Y.; Tang K.; Wang W.; Zhu J.; Wei M.; Evans D. G.; Duan X. Appl. Catal. B: Environ. 2019, 248, 394.
[21]
Xu S.; Gu Q. Y.; Luo M. S. Appl. Chem. Ind. 2019, 48, 1. (in Chinese)
[21]
(徐舜, 谷庆阳, 罗明生, 应用化工, 2019, 48, 1.)
[22]
Lv Z.; Duan X. Chinese J. Catal. 2008, 29, 839. (in Chinese)
[22]
(吕志, 段雪, 催化学报, 2008, 29, 839.)
[23]
Li J. X.; Li B.; Wang J. K.; He L.; Zhao Y. F. Acta Chim. Sinica 2021, 79, 238. (in Chinese)
[23]
(李佳欣, 李蓓, 王纪康, 何蕾, 赵宇飞, 化学学报, 2021, 79, 238.)
[24]
Huang L.; Zou Y.; Chen D.; Wang S. Chinese J. Catal. 2019, 40, 1822.
[25]
Xiong S.; Qian X.; Zhong Z.; Wang Y. J. Membrane Sci. 2022, 658, 120740.
[26]
Huang Y.; Liu L. Sci. China Mater. 2019, 627, 913.
[27]
Amin M.; Shah N. A.; Bhatti A. S.; Malik M. A. CrystEngComm 2014, 16, 6080.
[28]
Wang F.; Zhao C.; Liu B.; Yuan S. J. Phys. D: Appl. Phys. 2009, 42, 115411.
Outlines

/