Chiral Triptycene-Based Red Thermally Activated Delayed Fluorescence Polymers and Their Organic Light-Emitting Diodes★
Received date: 2023-04-20
Online published: 2023-05-19
Supported by
National Natural Science Foundation of China(92256304); National Natural Science Foundation of China(22122111); National Natural Science Foundation of China(91956119)
Chiral triptycene acridine (TpAc) has unique 3D structure, homoconjugation effect and two separate reaction sites. By using the design strategy of chiral electron donor-acceptor (D*-A) copolymerization, the triptycene-based non-conjugated chiral red thermally activated delayed fluorescence (TADF) polymers (R,R)-pTpAcBTZ and (S,S)- pTpAcBTZ were directly polymerized by using TpAC as chiral electron donor and 4,7-dibromobenzo[c][1,2,5]thiadiazole (BTZ) as the strong electron acceptor. The molecular weights of these chiral polymers were characterized by gel permeation chromatography (GPC), and the GPC analysis indicated that the number-average molecular weight (Mn) ranged from 37.9 kDa to 39.3 kDa with the polydispersity index (PDI) values from 1.99 to 2.02. The chiral polymers exhibited good solubility in common organic solvents, such as chlorobenzene, tetrahydrofuran, dichloromethane and chloroform, ensuring good film quality during solution processing. In addition, the chiral TADF polymers showed excellent thermal stability with thermal decomposition temperature (Td) (corresponding to a 5% weight loss) around 440 ℃, and glass transition temperatures (Tg) were also detected in these chiral polymers when they were heated to 300 ℃, which could be ascribed to their highly rigid and twisted structures. According to the onset of the oxidation curve, the highest occupied molecular orbital (HOMO) energy levels of the chiral polymers were estimated to be -5.27 eV. Their corresponding optical energy band gaps were estimated to be 2.21 eV from the onset of their ultraviolet-visible (UV-Vis) absorption spectra in toluene. Consequently, the corresponding lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be -3.06 eV. The S1 and T1 values of pTpAcBTZ were 2.13 eV and 2.05 eV, respectively, which were determined at 77 K, and the corresponding ΔEST was 0.08 eV which were favorable for reverse intersystem crossing of excitons from T1 to S1 states. The chiral TADF polymers showed efficient red TADF (λtoluene=663 nm) activity, and they also displayed mirror-image red circularly polarized luminescence (CPL) signals, with the |glum| of approximately 1.4×10-3. By using the chiral red polymers as emitters, the obtained solution-processed red OLEDs displayed maximum electroluminescence peak of about 658 nm, and its turn-on voltage is 3.6 V at a brightness of 1.0 cd/m2. The device exhibited well device efficiency, with a maximum external quantum efficiency of 2.0%, maximum current efficiency of 1.1 cd/A, maximum power efficiency of 0.8 lm/W. The design of the non-conjugated chiral polymers and their red TADF activity are conducive to promoting the development of related research fields such as chiral luminescent materials and red luminescence devices.
Yinfeng Wang , Meng Li , Chuanfeng Chen . Chiral Triptycene-Based Red Thermally Activated Delayed Fluorescence Polymers and Their Organic Light-Emitting Diodes★[J]. Acta Chimica Sinica, 2023 , 81(6) : 588 -594 . DOI: 10.6023/A23040153
[1] | (a) Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Appl. Phys. Lett. 2011, 98, 162508. |
[1] | (b) Kim, D.-Y. J. Korean Phys. Soc. 2006, 49, 505. |
[1] | (c) Feng, H.; Li, Q.; Wan, W.; Song, J.-H.; Gong, Q.; Brongersma, M. L.; Li, Y. ACS Photonics 2019, 6, 2910. |
[1] | (d) Nishizawa, N.; Hamada, A.; Takahashi, K.; Kuchimaru, T.; Munekata, H. Jpn. J. Appl. Phys. 2020, 59, SEEG03. |
[1] | (e) Zhang, X. G.; Yu, Q.; Jiang, W. X.; Sun, Y. L.; Bai, L.; Wang, Q.; Qiu, C.-W.; Cui, T. J. Adv. Sci. 2020, 7, 1903382. |
[1] | (f) Zhang, L.; Zhao, W.-L.; Li, M.; Lü, H.-Y.; Chen, C.-F. Acta Chim. Sinica 2020, 78, 1030. (in Chinese) |
[1] | (张亮, 赵文龙, 李猛, 吕海燕, 陈传峰, 化学学报, 2020, 78, 1030.) |
[2] | Grell, M.; Oda, M.; Whitehead, K. S.; Asimakis, A.; Neher, D.; Bradley, D. D. C. Adv. Mater. 2001, 13, 577. |
[3] | Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150. (in Chinese) |
[3] | (李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.) |
[4] | (a) Zhang, D.-W.; Li, M.; Chen, C.-F. Chem. Soc. Rev. 2020, 49, 1331. |
[4] | (b) Gong, Z.-L.; Zhu, X.; Zhou, Z.; Zhang, S.-W.; Yang, D.; Zhao, B.; Zhang, Y.-P.; Deng, J.; Cheng, Y.; Zheng, Y.-X.; Zang, S.-Q.; Kuang, H.; Duan, P.; Yuan, M.; Chen, C.-F.; Zhao, Y. S.; Zhong, Y.-W.; Tang, B. Z.; Liu, M. Sci. China: Chem. 2021, 64, 2060. |
[4] | (c) Wang, M.; Zhao, C.-H. Chem. Rec. 2022, 22, e202100199. |
[5] | (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
[5] | (b) Zhang, L.; Wang, Y.-F.; Li, M.; Gao, Q.-Y.; Chen, C.-F. Chin. Chem. Lett. 2021, 32, 740. |
[6] | Li, M.; Li, S.-H.; Zhang, D.; Cai, M.; Duan, L.; Fung, M.-K.; Chen, C.-F. Angew. Chem., Int. Ed. 2018, 57, 2889. |
[7] | (a) Zhang, Y.; Zhang, X.; Zhang, H.; Xiao, Y.; Quan, Y.; Ye, S.; Cheng, Y. J. Phys. Chem. C 2019, 123, 24746. |
[7] | (b) Sun, S.; Wang, J.; Chen, L.; Chen, R.; Jin, J.; Chen, C.; Chen, S.; Xie, G.; Zheng, C.; Huang, W. J. Mater. Chem. C 2019, 7, 14511. |
[7] | (c) Wu, Z.-G.; Han, H.-B.; Yan, Z.-P.; Luo, X.-F.; Wang, Y.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y. Adv. Mater. 2019, 1900524. |
[7] | (d) Li, M.; Wang, Y.-F.; Zhang, D.; Duan, L.; Chen, C.-F. Angew. Chem., Int. Ed. 2020, 59, 3500. |
[7] | (e) Yang, S.-Y.; Wang, Y.-K.; Peng, C.-C.; Wu, Z.-G.; Yuan, S.; Yu, Y.-J.; Li, H.; Wang, T.-T.; Li, H.-C.; Zheng, Y.-X.; Jiang, Z.-Q.; Liao, L.-S. J. Am. Chem. Soc. 2020, 142, 17756. |
[7] | (f) Xu, Y.; Wang, Q.; Cai, X.; Li, C.; Wang, Y. Adv. Mater. 2021, 33, 2100652. |
[7] | (g) Ni, F.; Huang, C.-W.; Tang, Y.; Chen, Z.; Wu, Y.; Xia, S.; Cao, X.; Hsu, J.-H.; Lee, W.-K.; Zheng, K.; Huang, Z.; Wu, C.-C.; Yang, C. Mater. Horiz. 2021, 8, 547. |
[7] | (h) Yan, Z.-P.; Liu, T.-T.; Wu, R.; Liang, X.; Li, Z.-Q.; Zhou, L.; Zheng, Y.-X.; Zuo, J.-L. Adv. Funct. Mater. 2021, 31, 2103875. |
[7] | (i) Tan, K.-K.; Zhang, D.-W.; Zhao, W.-L.; Li, M.; Chen, C.-F. Chem. Eng. J. 2023, 462, 142123. |
[7] | (j) Zhao, W.-L.; Wang, Y.-F.; Wan, S.-P.; Lu, H.-Y.; Li, M.; Chen, C.-F. CCS Chem. 2022, 4, 3540. |
[7] | (k) Liang, Z.-P.; Tang, R.; Qiu, Y.-C.; Wang, Y.; Lu, H.; Wu, Z.-G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese) |
[7] | (梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.) |
[8] | Zou, Y.; Gong, S.; Xie, G.; Yang, C. Adv. Optical Mater. 2018, 6, 1800568. |
[9] | (a) Shao, S.; Ding, J.; Wang, L. Chin. J. Appl. Chem. 2018, 35, 993. (in Chinese) |
[9] | (邵世洋, 丁军桥, 王利祥, 应用化学, 2018, 35, 993.) |
[9] | (b) Wei, Q.; Ge, Z.; Voit, B. Micromol. Rapid. Commun. 2019, 40, 1800570. |
[10] | (a) Chen, C.-F.; Han, Y. Acc. Chem. Res. 2018, 51, 2093. |
[10] | (b) He, Y.; Yang, X.; Qi, M.; Chen, C.-F. Chin. Chem. Lett. 2021, 6, 2043. |
[11] | (a) Wang, Y.-F.; Li, M.; Teng, J.-M.; Zhou, H.-Y.; Chen, C.-F. Adv. Funct. Mater. 2021, 31, 2106418. |
[11] | (b) Wang, Y.-F.; Li, M.; Teng, J.-M.; Zhou, H.-Y.; Zhao, W.-L.; Chen, C.-F. Angew. Chem., Int. Ed. 2021, 60, 23619. |
[12] | Naveen, K. R.; Prabhu, C. P. K.; Braveenth, R.; Kwon, J. H. Chem.- Eur. J. 2022, 28, e202103532. |
[13] | (a) Frédéric, L.; Desmarchelier, A.; Favereau, L.; Pieters, G. Adv. Funct. Mater. 2021, 31, 2010281. |
[13] | (b) Li, M.; Chen, C.-F. Org. Chem. Front. 2022, 9, 6441. |
[13] | (c) Li, M.; Wang, Y.-F.; Zhang, D.-W.; Zhang, D.; Hu, Z.-Q.; Duan, L.; Chen, C.-F. Sci. China Mater. 2021, 64, 899. |
[13] | (d) Yang, W.; Li, N.; Miao, J.; Zhan, L.; Gong, S.; Huang, Z.; Yang, C. CCS Chem. 2022, 4, 3463. |
[13] | (e) Dong, X.; Shen, S.; Qin, Y.; Hu, X.; Gao, H.; Liu, G.; Gao, T.; Pang, Z.; Wang, P.; Wang, Y. Chin. Chem. Lett. 2023, doi: 10.1016/j.cclet.2023.108311. |
/
〈 |
|
〉 |