Article

A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene

  • Lei Yang ,
  • Jiaoyang Ge ,
  • Fangli Wang ,
  • Wangyang Wu ,
  • Zongxiang Zheng ,
  • Hongtao Cao ,
  • Zhou Wang ,
  • Xueqin Ran ,
  • Linhai Xie
Expand
  • a State Key Laboratory for Organic Electronics and Information Displays, Institute of Information Materials and Nanotechnology, College of Materials Science and Engineering, Nanjing University of Posts &Telecommunications, Nanjing 210023, China
    b School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
    c College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Received date: 2023-03-06

  Online published: 2023-05-23

Supported by

China Postdoctoral Science Foundation(2022M711684); Natural Science Foundation of the Jiangsu Higher Education Institutions(22KJB430036); National Natural Science Foundation of China(21503114); National Natural Science Foundation of China(21774061); National Natural Science Foundation of China(61605090); National Natural Science Foundation of China(61604076); Nanjing University of Posts and Telecommunications Scientific Foundation NUPTSF, China(NY215056); Nanjing University of Posts and Telecommunications Scientific Foundation NUPTSF, China(NY214176); Nanjing University of Posts and Telecommunications Scientific Foundation NUPTSF, China(NY215172); Nanjing University of Posts and Telecommunications Scientific Foundation NUPTSF, China(2016XSG03)

Abstract

Organic semiconductor materials are widely used in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells (OSCs), but their low mobility is not conducive to electron transport. In this work, a novel class of grid structures based on fluorene (OF) with a “口” structure has been designed and calculated, which has a geometric structure that can extend laterally compared with ordinary macrocyclic molecules. Density functional theory was utilized to study its molecular structure, ring strain energy, and various electronic properties, including molecular orbitals, adiabatic ionization potential, adiabatic electron affinity potentials, and reorganization energies. In addition, the weak interactions within molecules and the contribution of each vibration mode to the reorganization energy of OF were investigated by using non-covalent interaction analysis and Normal Mode (NM) analysis, respectively. The results show that OF has a weak ring strain energy (8.20 kJ/mol) which will be easily synthesized. Through intramolecular weak interaction analysis, it is found that in cis-OF the two fluorene elements on the beam are close and produce a certain angle, the π-π interaction is generated. Compared with Bis-Fl1, Bis-Fl2, Quarter-Fl1 and Quarter-Fl2, the energy gap of OF molecules decreases, the highest occupied molecular orbital (HOMO) energy level increases, and the lowest unoccupied molecular orbital (LUMO) energy level decreases, corresponding to adiabatic ionization potential (IPa) and adiabatic electron affinity(EAa), that is, the IPa of OF molecules decreases and EAa increases, which proves that the lattice effect can improve the hole and electron injection ability of molecules. At the same time, OF has a lower IPa which would be a very potential p-type molecular material. Interestingly, the reorganization energy of both OF molecules decreased compared with BF and QF, indicating that the lattice effect is an effective way to reduce the hole and electron reorganization energy which provides a strategy for the design of organic semiconductor materials with excellent charge transport properties.

Cite this article

Lei Yang , Jiaoyang Ge , Fangli Wang , Wangyang Wu , Zongxiang Zheng , Hongtao Cao , Zhou Wang , Xueqin Ran , Linhai Xie . A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene[J]. Acta Chimica Sinica, 2023 , 81(6) : 613 -619 . DOI: 10.6023/A23030071

References

[1]
Yan, C.; Qin, J.; Wang, Y.; Li, G.; Cheng, P. Adv. Energy Mater. 2022, 12, 2201087.
[2]
Reissig, L.; Dalgleish, S.; Awaga, K. Sci. Rep. 2018, 8, 15415.
[3]
Li, M.; Lv, A. F. Chin. J. Org. Chem. 2022, 42, 54. (in Chinese)
[3]
(李敏, 吕爱风, 有机化学, 2022, 42, 54.)
[4]
Zhou, M.; Li, J.; Cheng, J.; Ge, C. W.; Cheng, T. Y.; Gao, X. K. Chin. J. Org. Chem. 2021, 41, 4400. (in Chinese)
[4]
(周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.)
[5]
Li, X.; Wang, Z.; Chen, K.; Zemlyanov, D.Y.; You, L.; Mei, J. ACS Appl. Mater. Interfaces 2021, 13, 5312.
[6]
Cai, G.; Cui, P.; Shi, W.; Morris, S.; Lou, S. N.; Chen, J.; Ciou, J. H.; Paidi, V. K.; Lee, K. S.; Li, S.; Lee, P. S. Adv. Sci. 2020, 7, 1903109.
[7]
Liu, B.; Bao, Y.; Ling, H.-F.; Zhu, W.-S.; Gong, R.-J.; Lin, J.-Y.; Xie, L.-H.; Yi, M.-D.; Huang, W. Chinese J. Polym. Sci. 2016, 34, 1183.
[8]
Li, T. F.; Zhan, X. W. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
[8]
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
[9]
Zhu, K.; Tang, D.; Zhang, K.; Wang, Z.; Ding, L.; Liu, Y.; Yuan, L.; Fan, J.; Song, B.; Zhou, Y.; Li, Y. Org. Electron. 2017, 48, 179
[10]
Brebels, J.; Kesters, J.; Defour, M.; Pirotten, G.; Van Mele, B.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. Polymer. 2018. 137, 303.
[11]
Feng, Q.; Xie, S.; Tan, K.; Zheng, X.; Yu, Z.; Li, L.; Liu, B.; Li, B.; Yu, M.; Yu, Y.; Zhang, X.; Xie, L.; Huang, W. ACS Appl. Polym. Mater. 2019, 1, 2441.
[12]
Yang, S.; Streater, D.; Fiankor, C.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2021, 143, 1061.
[13]
Schober, C.; Reuter, K.; Oberhofer, H. J. Phys. Chem. Lett. 2016, 7, 3973.
[14]
Friederich, P.; Gómez, V.; Sprau, C.; Meded, V.; Strunk, T.; Jenne, M.; Magri, A.; Symalla, F.; Colsmann, A.; Ruben, M.; Wenzel, W. Adv. Mater. 2017, 29, 1703505.
[15]
Chen, J.; Zhang, W.; Wang, L.; Yu, G. Adv. Mater. 2023, 35, 2210772.
[16]
Marcus, R. A. Annu. Rev. Phys. Chem. 2003, 15, 155.
[17]
Xie, X.; Wei, Y.; Lin, D.; Zhong, C.; Xie, L.; Huang, W. Chinese J. Chem. 2019, 38, 103.
[18]
Yang, L.; Mao, J.; Yin, C.-Z.; Akbar Ali, M.; Wu, X.-P.; Dong, C.-Y.; Liu, Y.-Y.; Wei, Y.; Xie, L.-H.; Ran, X.-Q.; Huang, W. New J. Chem. 2019, 43, 7790.
[19]
Yang, L.; Yin, C. Z.; Ali, M. A.; Dong, C. Y.; Xie, X. M.; Wu, X. P.; Mao, J.; Wang, Y. X.; Yu, Y.; Xie, L. H.; Bian, L. Y.; Bao, J. M.; Ran, X. Q.; Huang, W. Chinese J. Chem. 2019, 37, 915.
[20]
Yu, M.-N.; Ou, C.-J.; Liu, B.; Lin, D.-Q.; Liu, Y.-Y.; Xue, W.; Lin, Z.-Q.; Lin, J.-Y.; Qian, Y.; Wang, S.-S.; Cao, H.-T.; Bian, L.-Y.; Xie, L.-H.; Huang, W. J. Polym. Sci. B Polym. Phys. 2017, 35, 155.
[21]
Sedghi, G.; Esdaile, L. J.; Anderson, H. L.; Martin, S.; Bethell, D.; Higgins, S. J.; Nichols, R. J., Adv. Mater. 2012, 24, 653.
[22]
Lin, D.; Zhang, W.; Yin, H.; Hu, H.; Li, Y.; Zhang, H.; Wang, L.; Xie, X.; Hu, H.; Yan, Y.; Ling, H.; Liu, J.; Qian, Y.; Tang, L.; Wang, Y.; Dong, C.; Xie, L.; Zhang, H.; Wang, S.; Wei, Y.; Guo, X.; Lu, D.; Huang, W. Research 2022, 2022, 9820585.
[23]
Chang, A. C.; Messikh, M. B.; Kaiser, M.; Carter, K. R. ACS Appl. Polym. Mater. 2021, 3, 3595.
[24]
Han, Y.; Bai, L.; Lin, J.; Ding, X.; Xie, L.; Huang, W. Adv. Funct. 2021, 31, 2105092.
[25]
Liu, A.; Liu, Z.; Lin, H.; Tang, W.; Lin, Z.; Zhang, W.; Qi, Z.; Gu, X.; Mo, Y.; Hou, L. J. Mater. Chem. C 2020, 8, 9303.
[26]
Nakahama, T.; Kitagawa, D.; Sotome, H.; Ito, S.; Miyasaka, H.; Kobatake, S. J. Phys. Chem. C 2017, 121, 6272.
[27]
Liu, J.-F.; Wang, X.-Q.; Yu, Y.-J.; Zou, S.-N.; Yang, S.-Y.; Jiang, Z.-Q.; Liao, L.-S. Org. Electron. 2021, 91, 106088.
[28]
Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.
[29]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. S., G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, C.1, Gaussian, Inc., Wallingford, CT, 2009.
[30]
Li, Y.; Wang, Z.; Cai, X.; Liu, K.; Dong, J.; Chang, S.; Su, S.-J. Dyes Pigm. 2019, 163, 249.
[31]
Lu, T.; Chen, F. J. Comput. Chem. 2022, 43, 8.
[32]
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498.
[33]
Reimers, J. R. J. Chem. Phys. 2001, 115, 9103.
Outlines

/