Communication

Synthesis and Characterization of a Novel Pillar[5]arene That can Undergo Single-Crystal-to-Single-Crystal (SCSC) Transformation

  • Changshun Ma ,
  • Weihang Jin ,
  • Fei Tong ,
  • Ruirui Gu ,
  • Dahui Qu
Expand
  • School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-26

  Online published: 2023-05-26

Supported by

National Natural Science Foundation of China(22105071); National Natural Science Foundation of China(22025503); National Natural Science Foundation of China(22205064); National Natural Science Foundation of China(2220102004); Shanghai Municipal Science and Technology Major Project(2018SHZDZX03); Fundamental Research Funds for the Central Universities; Program of Introducing Talents of Discipline to Universities(B16017); Science and Technology Commission of Shanghai Municipality(21JC1401700); Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(SN-ZJU-SIAS-006); Shanghai Sailing Program(21YF1409200); Shanghai Pujiang Program(22PJ1402200)

Abstract

Organic smart materials are able to change their properties in response to specific stimuli, being a type of materials that are potential to be applied in many fields. The stimuli-responsive abilities often arise from variations of structures at the molecular level. In this study, a new type of skeleton-functionalized pillar[5]arene (N-naphthyl-phenothiazinyl-pillar[5]- arene, 6) was successfully synthesized by incorporating a quinoline structure with a naphthalene substitution into the pillar[5]arene skeleton. First, compound 2 was obtained through two-step reactions, and was further reacted with 2-aminothiophenol through an amine/carbonyl condensation followed by substitution to yield a quinone-type thiazine structure of pillar[5]arene 3. Compound 3 was further reduced to a phenol-type structure, i.e. compound 4, by sodium borohydride. Compound 4 was further functionalized with 2-bromo-naphthalene through palladium-catalyzed Buchwald-Hartwig reaction to yield compound 5. In order to improve stability, the hydroxy group of compound 5 was converted to a methoxy group by injecting iodomethane into the acetone reaction solution of compound 5, resulting in compound 6. Structure of compound 6 was characterized by 1H NMR (nuclear magnetic resonance spectroscopy), 13C NMR, high-resolution mass spectra (HRMS), and X-ray single-crystal diffraction. The single crystal of this new pillar[5]arene was able to undergo a single-crystal-to-single-crystal (SCSC) conformational transformation under heating, accompanied by a change in stacking mode. Moreover, it is found that changing the guest molecule can adjust the molecular conformation in the grown single crystal. X-ray single-crystal diffraction and thermogravimetric analysis were used to verify this transformation process. This work studies the solvent-induced crystal conformation transition process from the molecular level, which provides an example for the rational construction of stimuli-responsive smart materials.

Cite this article

Changshun Ma , Weihang Jin , Fei Tong , Ruirui Gu , Dahui Qu . Synthesis and Characterization of a Novel Pillar[5]arene That can Undergo Single-Crystal-to-Single-Crystal (SCSC) Transformation[J]. Acta Chimica Sinica, 2023 , 81(6) : 572 -576 . DOI: 10.6023/A23040169

References

[1]
Zheng, Y.; Jia, X.; Li, K.; Xu, J.; Bu, X. H. Adv. Energy Mater. 2021, 12, 2100324.
[2]
Zhang, J. P.; Liao, P. Q.; Zhou, H. L.; Lin, R. B.; Chen, X. M. Chem. Soc. Rev. 2014, 43, 5789.
[3]
Mohanrao, R.; Sureshan, K. M. Angew. Chem., Int. Ed. 2018, 57, 1243.
[4]
Krishnan, B. P.; Sureshan, K. M. J. Am. Chem. Soc. 2015, 137, 1692.
[5]
Fujimoto, A.; Fujinaga, N.; Nishimura, R.; Hatano, E.; Kono, L.; Nagai, A.; Sekine, A.; Hattori, Y.; Kojima, Y.; Yasuda, N.; Morimoto, M.; Yokojima, S.; Nakamura, S.; Feringa, B. L.; Uchida, K. Chem. Sci. 2020, 11, 12307.
[6]
Kitagawa, D.; Kawasaki, K.; Tanaka, R.; Kobatake, S. Chem. Mater. 2017, 29, 7524.
[7]
Karothu, D. P.; Weston, J.; Desta, I. T.; Naumov, P. J. Am. Chem. Soc. 2016, 138, 13298.
[8]
Mondal, A.; Bhattacharya, B.; Das, S.; Bhunia, S.; Chowdhury, R.; Dey, S.; Reddy, C. M. Angew. Chem., Int. Ed. 2020, 59, 10971.
[9]
Jin, M.; Sumitani, T.; Sato, H.; Seki, T.; Ito, H. J. Am. Chem. Soc. 2018, 140, 2875.
[10]
Mobin, S. M.; Srivastava, A. K.; Mathur, P.; Lahiri, G. K. Dalton Trans. 2010, 39, 1447.
[11]
Ma, F.; Sun, R.; Sun, A.-H.; Xiong, J.; Sun, H.-L.; Gao, S. Inorg. Chem. Front. 2020, 7, 930.
[12]
Rodriguez-Jimenez, S.; Feltham, H. L.; Brooker, S. Angew. Chem., Int. Ed. 2016, 55, 15067.
[13]
Liu, F.; Xu, Y.; Zhao, L.; Zhang, L.; Guo, W.; Wang, R.; Sun, D. J. Mater. Chem. A 2015, 3, 21545.
[14]
Saini, A. K.; Natarajan, K.; Mobin, S. M. Chem. Commun. 2017, 53, 9870.
[15]
Jie, K.; Zhou, Y.; Li, E.; Huang, F. Acc. Chem. Res. 2018, 51, 2064.
[16]
Shi, B.; Shangguan, L.; Wang, H.; Zhu, H.; Xing, H.; Liu, P.; Liu, Y.; Liu, J.; Huang, F. ACS Mater. Lett. 2019, 1, 111.
[17]
Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. A. Angew. Chem., Int. Ed. 2015, 54, 9849.
[18]
Lee, S.; Kim, D.; Park, I.-H.; Jung, O.-S. CrystEngComm 2021, 23, 40.
[19]
Li, Y.; Zhao, B.; Xue, J. P.; Xie, J.; Yao, Z. S.; Tao, J. Nat. Commun. 2021, 12, 6908.
[20]
Zhang, Z.; Lin, Y.; Jin, J.; Gong, L.; Peng, Y.; Song, Y.; Shen, N.; Wang, Z.; Du, K.; Huang, X. Angew. Chem., Int. Ed. 2021, 60, 23373.
[21]
Li, N. Y.; Liu, D.; Ren, Z. G.; Lollar, C.; Lang, J. P.; Zhou, H. C. Inorg. Chem. 2018, 57, 849.
[22]
Li, H.; Qu, D.-H. Sci. China Chem. 2015, 58, 916.
[23]
Han, C.; Zhang, Z.; Chi, X.; Zhang, M.; Yu, G.; Huang, F. Acta Chim. Sinica 2012, 70, 1775. (in Chinese)
[23]
(韩成友, 张子彬, 池小东, 张明明, 喻国灿, 黄飞鹤, 化学学报, 2012, 70, 1775.)
[24]
Wang, K.; Tian, X.; Jordan, J. H.; Velmurugan, K.; Wang, L.; Hu, X.-Y. Chin. Chem. Lett. 2022, 33, 89.
[25]
Fa, S.; Kakuta, T.; Yamagishi, T.-A.; Ogoshi, T. CCS Chem. 2019, 1, 50.
[26]
Behera, H.; Yang, L.; Hou, J. L. Chin. J. Chem. 2020, 38, 215.
[27]
Yi, J.; Chen, M.; Xue, S.; Tao, Z. Chin. J. Org. Chem. 2016, 36, 653. (in Chinese)
[27]
(易君明, 陈明华, 薛赛凤, 陶朱, 有机化学, 2016, 36, 653.)
[28]
Wu, M.; Yang, Y.; Xue, M. Acta Chim. Sinica 2022, 80, 1057. (in Chinese)
[28]
(吴明港, 杨勇, 薛敏, 化学学报, 2022, 80, 1057.)
[29]
Yue, S.; Zhou, Y.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053. (in Chinese)
[29]
(岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)
[30]
Xiao, M.; Cheng, M.; Shi, F. Sci. Sin. Chim. 2017, 47, 40. (in Chinese)
[30]
(肖萌, 成梦娇, 石峰, 中国科学: 化学, 2017, 47, 40.)
[31]
Cheng, M.; Gong, W.; Lu, M.; Ma, J.; Lu, Z.; Li, H. Chin. J. Chem. 2022, 40, 925.
[32]
Liu, J.; Sun, X. W.; Huang, T. T.; Zhang, Y. M.; Yao, H.; Wei, T. B.; Lin, Q. Chin. J. Chem. 2021, 39, 3421.
[33]
Li, Y. W.; Fu, Y. H.; Hou, J. L. Chin. J. Chem. 2022, 40, 1293.
Outlines

/