Article

Synthesis and Optical Property Studies of Blue-Light Organic Radicals Based on N-Heterocyclic Carbenes

  • Yanyan Ren ,
  • Xin Li ,
  • Yingfeng Han
Expand
  • College of Chemistry and Materials Science, Northwest University, Xi'an 710127
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-12

  Online published: 2023-05-26

Supported by

National Natural Science Fund for Distinguished Young Scholars of China(22025107); China Postdoctoral Science Foundation(2022M712573); Shaanxi Fundamental Science Research Project for Chemistry & Biology(22JHZ003); Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province(2023-GHZD-15); Xi'an Key Laboratory of Functional Supramolecular Structure and Materials

Abstract

Because of the open-shell electronic structures, organic radicals have many special properties and can be applied to various fields, such as molecular magnets, spintronics, organic rechargeable batteries, electron paramagnetic resonance imaging and field-effect transistors. Specifically, organic radicals provide an alternative method to overcome the efficiency limitation of organic light-emitting diodes (OLEDs) based on conventional fluorescent organic molecules. They have doublet- spin properties arising from unpaired electronics and can be designed to have rapid emission on nanosecond timescales for exploitation in OLEDs with up to 100% internal quantum efficiency. However, luminescent radicals are still rare and often have narrow highest occupied molecular orbital (HOMO)-singly occupied molecular orbital (SOMO) gap, so the luminescent colors are mainly focused on the long wave range of visible light, such as orange and red. It is difficult to obtain luminescent radicals with blue emission. In this work, to further enrich the types of luminescent radicals and broaden the luminescence range of radicals, we design and synthesize novel radical precursors [2a]I and [2b]I by palladium-catalyzed coupling reaction of N-heterocyclic carbenes (NHCs) and 9-(4-iodophenyl)-9H-pyrido[2,3-b]indole, which was characterized by nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectrometry, and single-crystal X-ray diffractometry analyses. Subsequently, two neutral luminescent radicals 3a and 3b were successfully prepared by single electron reduction using KC8 as a reducing agent. The experimental results show that radicals 3a and 3b have blue emission in tetrahydrofuran solution, and their maximum emission wavelengths are 450 and 428 nm, respectively. In addition, it is found that the fluorescence emission energy of radicals 3a and 3b is much higher than the maximum absorption energy given by the absorption spectrum, indicating an obvious Anti-Kasha emission phenomenon. Theoretical calculations further confirm that the fluorescence originates from the higher energy electronic excited state (D3) rather than the lowest energy-excited state (D1). This work shows that luminescent radicals with blue emission can be constructed by using NHCs as the skeleton unit, which provides a new research idea for the controlled synthesis of stable luminescent radicals.

Cite this article

Yanyan Ren , Xin Li , Yingfeng Han . Synthesis and Optical Property Studies of Blue-Light Organic Radicals Based on N-Heterocyclic Carbenes[J]. Acta Chimica Sinica, 2023 , 81(7) : 735 -740 . DOI: 10.6023/A23040130

References

[1]
Peng Q.; Obolda A.; Zhang M.; Li F. Angew. Chem., Int. Ed. 2015, 54, 7091.
[2]
Zhao X.; Gong J.; Alam P.; Ma C.; Wang Y.; Guo J.; Zeng Z.; He Z.; Sung H. H. Y.; Williams I. D.; Wong K. S.; Chen S.; Lam J. W. Y.; Zhao Z.; Tang B. Z. CCS Chem. 2022, 4, 1912.
[3]
Teki Y. Chem. Eur. J. 2020, 26, 980.
[4]
Hattori Y.; Kusamoto T.; Nishihara H. Angew. Chem., Int. Ed. 2014, 53, 11845.
[5]
Ai X.; Evans E. W.; Dong S.; Gillett A. J.; Guo H.; Chen Y.; Hele T. J. H.; Friend R. H.; Li F. Nature 2018, 563, 536.
[6]
Ito M.; Shirai S.; Xie Y.; Kushida T.; Ando N.; Soutome H.; Fujimoto K. J.; Yanai T.; Tabata K.; Miyata Y.; Kita H.; Yamaguchi S. Angew. Chem., Int. Ed. 2022, 61, e202201965.
[7]
Zhou Z.; Lai W.; Yang P.; Wang X.; Xie S.; Zeng Z. Chin. J. Lumin. 2021, 42, 379. (in Chinese)
[7]
(周志彪, 赖伟铭, 杨朋, 王欣浩, 谢胜, 曾泽兵, 发光学报, 2021, 42, 379.)
[8]
Ji L.; Shi J.; Wei J.; Yu T.; Huang W. Adv. Mater. 2020, 32, 1908015.
[9]
Zou S.-J.; Shen Y.; Xie F.-M.; Chen J.-D.; Li Y.-Q.; Tang J.-X. Mater. Chem. Front. 2020, 4, 788.
[10]
Cui Z.; Abdurahman A.; Ai X.; Li F. CCS Chem. 2020, 2, 1129.
[11]
(a) Im Y.; Kim M.; Cho Y. J.; Seo J.-A.; Yook K. S.; Lee J. Y. Chem. Mater. 2017, 29, 1946.
[11]
(b) Yang Z.; Mao Z.; Xie Z.; Zhang Y.; Liu S.; Zhao J.; Xu J.; Chi Z.; Aldredb M. P. Chem. Soc. Rev. 2017, 46, 915.
[11]
(c) Xu Y.; Xu P.; Hu D.; Ma Y. Chem. Soc. Rev. 2021, 50, 1030.
[11]
(d) Wang Y.-F.; Li M.; Teng J.-M.; Zhou H.-Y.; Chen C.-F. Adv. Funct. Mater. 2021, 31, 2106418.
[12]
(a) Zhou T.; Qian Y.; Wang H.; Feng Q.; Xie L.; Huang W. Acta Chim. Sinica 2021, 79, 557. (in Chinese)
[12]
(周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.)
[12]
(b) Zhou L.; Chen J.-X.; Ji S.; Chen W.-C.; Huo Y. Acta Chim. Sinica 2022, 80, 359. (in Chinese)
[12]
(周路, 陈嘉雄, 籍少敏, 陈文铖, 霍延平, 化学学报, 2022, 80, 359.)
[13]
(a) Yang X.; Zhou G.; Wong W.-Y. Chem. Soc. Rev. 2015, 44, 8484.
[13]
(b) Tang M.-C.; Chan M.-Y.; Yam V. W.-W. Chem. Rev. 2021, 121, 7249.
[13]
(c) Sun H.; Shen S.; Zhu L. ACS Materials Lett. 2022, 4, 1599.
[13]
(d) Zhang D.-W.; Li M.; Chen C.-F. Angew. Chem., Int. Ed. 2022, 61, e202213130.
[14]
Zhang L.; Zhao W.-L.; Li M.; Lu H.-Y.; Chen C.-F. Acta Chim. Sinica 2020, 78, 1030. (in Chinese)
[14]
(张亮, 赵文龙, 李猛, 吕海燕, 陈传峰, 化学学报, 2020, 78, 1030.)
[15]
Guo H.; Peng Q.; Chen X.-K.; Gu Q.; Dong S.; Evans E. W.; Gillett A. J.; Ai X.; Zhang M.; Credgington D.; Coropceanu V.; Friend R. H.; Brédas J.-L.; Li F. Nat. Mater. 2019, 18, 977.
[16]
Burrezo P. M.; Jiménez V. G.; Blasi D.; Ratera I.; Campa?a A. G.; Veciana J. Angew. Chem., Int. Ed. 2019, 58, 16282.
[17]
Liu C.-H.; Hamzehpoor E.; Sakai-Otsuka Y.; Jadhav T.; Perepichka D. F. Angew. Chem., Int. Ed. 2020, 59, 23030.
[18]
Cho E.; Coropceanu V.; Brédas J.-L. J. Am. Chem. Soc. 2020, 142, 17782.
[19]
Kasha M. Discuss. Faraday Soc. 1950, 9, 14.
[20]
Chen L.; Arnold M.; Kittel Y.; Blinder R.; Jelezko F.; Kuehne A. J. C. Adv. Optical Mater. 2022, 10, 2102101.
[21]
Matsuda K.; Xiaotian R.; Nakamura K.; Furukori M.; Hosokai T.; Anraku K.; Nakaod K.; Albrecht K. Chem. Commun. 2022, 58, 13443.
[22]
Hattori Y.; Kitajima R.; Ota W.; Matsuoka R.; Kusamoto T.; Satofg T.; Uchida K. Chem. Sci. 2022, 13, 13418.
[23]
(a) Beldjoudi Y.; Osorio-Román I.; Nascimento M. A.; Rawson J. M. J. Mater. Chem. C 2017, 5, 2794.
[23]
(b) Beldjoudi Y.; Nascimento M. A.; Cho Y. J.; Yu H.; Aziz H.; Tonouchi D.; Eguchi K.; Matsushita M. M.; Awaga K.; Osorio-Roman I.; Constantinides C. P.; Rawson J. M. J. Am. Chem. Soc. 2018, 140, 6260.
[23]
(c) Beldjoudi Y.; Arauzo A.; Campo J.; Gavey E. L.; Pilkington M.; Nascimento M. A.; Rawson J. M. J. Am. Chem. Soc. 2019, 141, 6875.
[24]
Feng Z.; Chong Y.; Tang S.; Ruan H.; Fang Y.; Zhao Y.; Jiang J.; Wang X. Chin. J. Chem. 2021, 39, 1297.
[25]
(a) Li X.; Wang Y.-L.; Chen C.; Ren Y.-Y.; Han Y.-F. Nat. Commun. 2022, 13, 5367.
[25]
(b) Li X.; Wang Y.-L.; Chen C.; Han Y.-F. Chem. Eur. J. 2023, 29, e202203242.
[26]
Demchenko A. P.; Tomin V. I.; Chou P.-T. Chem. Rev. 2017, 117, 13353.
[27]
Im Y.; Lee H. L.; Lee J. Y. Org. Electron. 2019, 70, 48.
[28]
Cho E.; Coropceanu V.; Brédas J.-L. J. Mater. Chem. C 2021, 9, 10794.
[29]
(a) Abdurahman? A.; Hele T. J. H.; Gu Q.; Zhang? J.; Peng? Q.; Zhang M.; Friend? R. H.; Li? F.; Evans E. W. Nat. Mater. 2020, 19, 1224.
[29]
(b) Lu C.; Cho E.; Cui Z.; Gao Y.; Cao W.; Brédas J.-L.; Coropceanu V.; Li F. Adv. Mater. 2022, 35, 2208190.
[30]
Tang B.; Zhao J.; Xu J.-F.; Zhang X. Chem. Sci. 2020, 11, 1192.
[31]
Zhao J.; Li X.; Han Y.-F. J. Am. Chem. Soc. 2021, 143, 14428.
[32]
(a) Zavitsas A. A. J. Phys. Chem. A 2003, 107, 897.
[32]
(b) Das P.; Elder T.; Brennessel W. W.; Chmely S. C. RSC Adv. 2016, 6, 88050.
[33]
Mahoney J. K.; Jazzar R.; Royal G.; Martin D.; Bertrand G. Chem. Eur. J. 2017, 23, 6206.
[34]
Zhu S.; Liang R.; Jiang H. Tetrahedron 2012, 68, 7949.
[35]
Cigáň M.; Danko P.; Brath H.; ?akurda M.; Fi?era R.; Donovalová J.; Filo J.; Weis M.; Jakabovi? J.; Novota M.; Gáplovsky A. Molecules 2019, 24, 237.
Outlines

/