Research Progress of Ion-initiated in situ Generated Solid Polymer Electrolytes for High-safety Lithium Batteries★
Received date: 2023-03-20
Online published: 2023-05-26
Supported by
National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of Chinese Academy of Sciences(2020217); Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies(EEST2022-1)
Lithium-ion batteries, widely used in many aspects of the national economy such as electric vehicles, mobile intelligent devices and large-scale energy storage, have gradually entered special applications area including deep sea, deep space, deep ground and individual combat equipment. However, lithium batteries using traditional carbonate liquid electrolytes often suffer from potential safety risk such as electrolyte leakage, flammability and explosion, so it is urgent to develop a new generation of high-safety solid electrolytes. Among them, solid polymer electrolytes have attracted great attention because of their superior mechanical flexibility and compatibility with the main production processes of lithium battery. In terms of preparation process, solid polymer electrolytes prepared via solution-casting often easily lead to high interfacial resistance and then deteriorate the battery performance. In contrast, liquid organic precursors used in in-situ polymerization strategy can sufficiently penetrate the positive and negative electrodes to guarantee superior interfacial compatibility and efficient ionic conduction. At present, most of in-situ polymerization strategies are based on free radical thermal polymerization with additional initiators and the need for harsh conditions such as high temperature. Ion polymerization can use lithium salt or lithium metal as an initiator at room temperature, thereby effectively avoiding the introduction of impurities. Up to now, researchers have made considerable research progress in the construction of solid polymer electrolytes by ion-initiated in situ polymerization. Hence, this review mainly summarizes the research progress of solid polymer electrolytes from the aspects of cationic polymerization and anionic polymerization. In addition, we also elaborates the challenges and development trends of solid polymer electrolytes through ion-initiated in situ polymerization for high-safety lithium batteries in the future.
Zhixiang Yuan , Hao Zhang , Sijia Hu , Botao Zhang , Jianjun Zhang , Guanglei Cui . Research Progress of Ion-initiated in situ Generated Solid Polymer Electrolytes for High-safety Lithium Batteries★[J]. Acta Chimica Sinica, 2023 , 81(8) : 1064 -1080 . DOI: 10.6023/A23030085
[1] | Zheng Q.; Jiang L.-X.; Xu Y.-J.; Gao S.; Liu T.; Qu C.; Chen H.-S.; Li X.-F. Bull. Chin. Acad. Sci. 2022, 37, 529. (in Chinese) |
[1] | ( 郑琼, 江丽霞, 徐玉杰, 高嵩, 刘涛, 曲超, 陈海生, 李先锋, 中国科学院院刊, 2022, 37, 529.) |
[2] | Tu Z. Y.; Zachman M. J.; Choudhury S.; Wei S. Y.; Ma L.; Yang Y.; Kourkoutis L. F.; Archer L. A. Adv. Energy Mater. 2017, 7, 9. |
[3] | Zhang W.; Yu H. C.; Wu L. J.; Liu H.; Abdellahi A.; Qiu B.; Bai J. M.; Orvananos B.; Strobridge F. C.; Zhou X. F.; Liu Z. P.; Ceder G.; Zhu Y. M.; Thornton K.; Grey C. P.; Wang F. Sci. Adv. 2018, 4, 11. |
[4] | Holoubek J.; Yu M. Y.; Yu S. C.; Li M. Q.; Wu Z. H.; Xia D. W.; Bhaladhare P.; Gonzalez M. S.; Pascal T. A.; Liu P.; Chen Z. ACS Energy Lett. 2020, 5, 1438. |
[5] | Cheng X. B.; Zhao C. Z.; Yao Y. X.; Liu H.; Zhang Q. Chem 2019, 5, 74. |
[6] | Liu J.; Xu J.-Y.; Lin Y.; Li J.; Lai Y.-Q.; Yuan C.-F.; Zhang J.; Zhu K. Acta Chim. Sinica 2013, 71, 869. (in Chinese) |
[6] | ( 刘晋, 徐俊毅, 林月, 李劼, 赖延清, 袁长福, 张锦, 朱凯, 化学学报, 2013, 71, 869.) |
[7] | Jaumaux P.; Liu Q.; Zhou D.; Xu X. F.; Wang T. Y.; Wang Y. Z.; Kang F. Y.; Li B. H.; Wang G. X. Angew. Chem., Int. Ed. 2020, 59, 9134. |
[8] | Yabuuchi N. Chem. Lett. 2017, 46, 412. |
[9] | Lee H.; Oh P.; Kim J.; Cha H.; Chae S.; Lee S.; Cho J. Adv. Mater. 2019, 31, 1900376. |
[10] | Zheng B.-Z.; Wang H.-C.; Ma J.-L.; Gong Z.-L.; Yang Y. Sci. Sinica Chim. 2017, 47, 579. (in Chinese) |
[10] | ( 郑碧珠, 王红春, 马嘉林, 龚正良, 杨勇, 中国科学:化学, 2017, 47, 579.) |
[11] | Zhang J.-J.; Yang J.-F.; Wu H.; Zhang M.; Liu T.-T.; Zhang J.-N.; Dong S.-M.; Cui G.-L. Acta Polym. Sinica 2019, 50, 890. (in Chinese) |
[11] | ( 张建军, 杨金凤, 吴瀚, 张敏, 刘亭亭, 张津宁, 董杉木, 崔光磊, 高分子学报, 2019, 50, 890.) |
[12] | Yao P. H.; Yu H. B.; Ding Z. Y.; Liu P. C.; Lu J.; Lavorgna M.; Wu J. W.; Liu X. J. Front. Chem. 2019, 7, 17. |
[13] | Shi X. J.; Ma N. Y.; Wu Y. X.; Lu Y. H.; Xiao Q. Z.; Li Z. H.; Lei G. T. Solid State Ionics 2018, 325, 112. |
[14] | Liu T. T.; Zhang J. J.; Han W.; Zhang J. N.; Ding G. L.; Dong S. M.; Cui G. L. J. Electrochem. Soc. 2020, 167, 9. |
[15] | Li W.-T.; Zhong H.; Mai Y.-H. Prog. Chem. 2021, 33, 988. (in Chinese) |
[15] | ( 李文涛, 钟海, 麦耀华, 化学进展, 2021, 33, 988.) |
[16] | Vijayakumar V.; Anothumakkool B.; Kurungot S.; Winter M.; Nair J. R. Energy Environ. Sci. 2021, 14, 2708. |
[17] | Hamrahjoo M.; Hadad S.; Dehghani E.; Salami-Kalajahi M.; Roghani-Mamaqani H. Eur. Polym. J. 2022, 173, 14. |
[18] | Ouyang H.; Min S.; Yi J.; Liu X. Y.; Ning F. H.; Xu Y.; Jiang Y.; Zhao B.; Zhang J. J. ACS Appl. Mater. Interfaces 2022, 14, 53648. |
[19] | Lin Z. Y.; Guo X. W.; Wang Z. C.; Wang B. Y.; He S. M.; O'Dell L. A.; Huang J.; Li H.; Yu H. J.; Chen L. Q. Nano Energy 2020, 73, 9. |
[20] | Li H. P.; Xu Z. X.; Yang J.; Wang J. L.; Hirano S. I. Sustainable Energy Fuels 2020, 4, 5469. |
[21] | Okada M.; Yamashita Y.; Ishii Y. Makromol. Chem. 1964, 80, 196. |
[22] | Zhao Q.; Liu X.; Stalin S.; Khan K.; Archer L. A. Nat. Energy. 2019, 4, 365. |
[23] | Chen D. L.; Zhu M.; Kang P. B.; Zhu T.; Yuan H. C.; Lan J. L.; Yang X. P.; Sui G. Adv. Sci. 2022, 9, e2103663. |
[24] | Geng Z.; Huang Y. L.; Sun G. C.; Chen R. S.; Cao W. Z.; Zheng J. Y.; Li H. Nano Energy 2022, 91, 106679. |
[25] | Zhao C. Z.; Zhao Q.; Liu X.; Zheng J.; Stalin S.; Zhang Q.; Archer L. A. Adv. Mater. 2020, 32, e1905629. |
[26] | Ma Q.; Yue J.; Fan M.; Tan S. J.; Zhang J.; Wang W. P.; Liu Y.; Tian Y. F.; Xu Q.; Yin Y. X.; You Y.; Luo A.; Xin S.; Wu X. W.; Guo Y. G. Angew. Chem., Int. Ed. 2021, 60, 16554. |
[27] | Xiang J. W.; Zhang Y.; Zhang B.; Yuan L. X.; Liu X. T.; Cheng Z. X.; Yang Y.; Zhang X. X.; Li Z.; Shen Y.; Jiang J. J.; Huang, Y H. Energy Environ. Sci. 2021, 14, 3510. |
[28] | Yu J.; Lin X. D.; Liu J. P.; Yu J. T. T.; Robson M. J.; Zhou G. D.; Law H. M.; Wang H. R.; Tang B. Z.; Ciucci F. Adv. Energy Mater. 2022, 12, 2102932. |
[29] | Chen Y.; Huo F.; Chen S. M.; Cai W. B.; Zhang S. J. Adv. Funct. Mater. 2021, 31, 2102347. |
[30] | Xu G. Y.; Kushima A.; Yuan J. R.; Dou H.; Xue W. J.; Zhang X. G.; Yan X. H.; Li J. Energy Environ. Sci. 2017, 10, 2544. |
[31] | Liu F. Q.; Wang W. P.; Yin Y. X.; Zhang S. F.; Shi J. L.; Wang L.; Zhang X. D.; Zheng Y.; Zhou J. J.; Li L.; Guo Y. G. Sci. Adv. 2018, 4, 9. |
[32] | Li M. J.; Yang J. X.; Shi Y. Q.; Chen Z. F.; Bai P. X.; Su H.; Xiong P. X.; Cheng M. R.; Zhao J. W.; Xu Y. H. Adv. Mater. 2022, 34, e2107226. |
[33] | Wu H.; Tang B.; Du X. F.; Zhang J. J.; Yu X. R.; Wang Y. T.; Ma J.; Zhou Q.; Zhao J. W.; Dong S. M.; Xu G. J.; Zhang J. N.; Xu H.; Cui G. L.; Chen L. Q. Adv. Sci. 2020, 7, 2003370. |
[34] | Zhang J. N.; Wu H.; Du X. F.; Zhang H.; Huang L.; Sun F.; Liu T. T.; Tian S. W.; Zhou L. X.; Hu S. J.; Yuan Z. X.; Zhang B. T.; Zhang J. J.; Cui G. L. Adv. Energy Mater. 2023, 13, 2202529. |
[35] | Zhang K.; Wu F.; Wang X. R.; Zheng L. M.; Yang X. Y.; Zhao H. C.; Sun Y. H.; Zhao W. B.; Bai Y.; Wu C. Adv. Funct. Mater. 2021, 32, 2107764. |
[36] | Hwang S. S.; Cho C. G.; Kim H. Electrochem. Commun. 2010, 12, 916. |
[37] | Zhou D.; He Y. B.; Liu R. L.; Liu M.; Du H. D.; Li B. H.; Cai Q.; Yang Q. H.; Kang F. Y. Adv. Energy Mater. 2015, 5, 1500353. |
[38] | Cui Y. Y.; Chai J. C.; Du H. P.; Duan Y. L.; Xie G. W.; Liu Z. H.; Cui G. L. ACS Appl. Mater. Interfaces 2017, 9, 8737. |
[39] | Guo D.; Shinde D. B.; Shin W.; Abou-Hamad E.; Emwas A. H.; Lai Z. P.; Manthiram A. Adv. Mater. 2022, 34, 2201410. |
/
〈 |
|
〉 |