Research Progress on the Preparation of Metal-Organic Frameworks Encapsulated Metal Nanoparticle Composites and Their Catalytic Applications★
Received date: 2023-04-20
Online published: 2023-05-26
Supported by
National Key Research and Development Program of China(2021YFA1500403); National Key Research and Development Program of China(2021YFA1200302); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); National Natural Science Foundation of China(92056204); National Natural Science Foundation of China(21890381); National Natural Science Foundation of China(21721002); National Natural Science Foundation of China(22173024); National Natural Science Foundation of China(21722102); and the Youth Innovation Promotion Association CAS.
Metal-organic frameworks (MOFs) are characteristic of high specific surface area, abundant metal nodes, diverse organic ligands, and ordered pore structure. More importantly, its composition and structure are easy to be designed and controlled, so it is very promising to become a new class of catalytic carrier materials. In recent years, the composites of metal nanoparticles encapsulated by MOFs have attracted great attention in the field of catalysis due to their unique structural features. However, more in-depth and systematic research is still needed in terms of its precise preparation and the relationship of the structure and catalytic performance. Based on above, the recent research progress on the preparation methods of metal nanoparticles encapsulated by MOFs and their catalytic applications are systematically summarizd. First, the synthesis methods of metal nanoparticles encapsulated by MOFs are summarized. Then, the catalytic applications are discussed in term of synergy among metal nanoparticles, pore structure, organic ligands or/and metal nodes of MOFs. Moreover, the relationships among active component, structure and their properties are illustrated. Finally, the challenges, opportunities and future development prospects of this research direction are discussed from the aspects of synthesis methods and catalytic applications.
Fengbin Zheng , Kun Wang , Tian Lin , Yinglong Wang , Guodong Li , Zhiyong Tang . Research Progress on the Preparation of Metal-Organic Frameworks Encapsulated Metal Nanoparticle Composites and Their Catalytic Applications★[J]. Acta Chimica Sinica, 2023 , 81(6) : 669 -680 . DOI: 10.6023/A23040146
[1] | Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. |
[2] | Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76. |
[3] | Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Adv. Mater. 2018, 30, 1800702. |
[4] | Liu, D.; Wan, J.; Pang, G.; Tang, Z. Adv. Mater. 2019, 31, 1803291. |
[5] | Ma, Y.; Lu, W.; Han, X.; Chen, Y.; da Silva, I.; Lee, D.; Sheveleva, A. M.; Wang, Z.; Li, J.; Li, W.; Fan, M.; Xu, S.; Tuna, F.; McInnes, E. J. L.; Cheng, Y.; Rudi?, S.; Manuel, P.; Frogley, M. D.; Ramirez-Cuesta, A. J.; Schr?der, M.; Yang, S. J. Am. Chem. Soc. 2022, 144, 8624. |
[6] | Yang, Q.; Wang, Y.; Tang, X.; Zhang, Q.; Dai, S.; Peng, H.; Lin, Y.; Tian, Z.; Lu, Z.; Chen, L. Nano Lett. 2022, 22, 838. |
[7] | Wen, L.; Sun, K.; Liu, X.; Yang, W.; Li, L.; Jiang, H.-L. Adv. Mater. 2023, 35, 2210669. |
[8] | Wang, H.; Zheng, F.; Xue, G.; Wang, Y.; Li, G.; Tang, Z. Sci. China: Chem. 2021, 64, 1854. |
[9] | Zou, Y.-H.; Huang, Y.-B.; Si, D.-H.; Yin, Q.; Wu, Q.-J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 20915. |
[10] | Pan, Y.; Qian, Y.; Zheng, X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Natl. Sci. Rev. 2020, 8, nwaa224. |
[11] | Huang, Y.-B.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am. Chem. Soc. 2016, 138, 10104. |
[12] | Wang, S.; Ly, H. G. T.; Wahiduzzaman, M.; Simms, C.; Dovgaliuk, I.; Tissot, A.; Maurin, G.; Parac-Vogt, T. N.; Serre, C. Nat. Commun. 2022, 13, 1284. |
[13] | Wang, D.; Suo, M.; Lai, S.; Deng, L.; Liu, J.; Yang, J.; Chen, S.; Wu, M.-F.; Zou, J.-P. Appl. Catal. B: Environ 2023, 321, 122054. |
[14] | Sun, D.; Chen, L.; Zeng, L.; Shi, X.; Lu, J. J. Mater. Chem. A 2023, 11, 31. |
[15] | Xu, H.; Wei, X.; Zeng, H.; Jiang, C.; Wang, Z.; Ouyang, Y.; Lu, C.; Jing, Y.; Yao, S.; Dai, F. Nano Res. 2023, https://doi.org/10.1007/s12274-12023-15576-12273. |
[16] | Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Nano Res. 2023, 16, 7906. |
[17] | Gao, M.-L.; Li, L.; Sun, Z.-X.; Li, J.-R.; Jiang, H.-L. Angew. Chem., Int. Ed. 2022, 61, e202211216. |
[18] | Chen, J.-M.; Cui, C.-Q.; Liu, H.-L.; Li, G.-D. Acta Chim. Sinica 2022, 80, 467. (in Chinese) |
[18] | (陈俊敏, 崔承前, 刘瀚林, 李国栋, 化学学报, 2022, 80, 467.) |
[19] | Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1 |
[20] | Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Chem. Soc. Rev. 2017, 46, 126. |
[21] | Xiao, L.; Cheng, C.; Li, Z.; Zheng, C.; Du, J.; Song, M.; Wan, Y.; Li, S.; Jun, G.; Zhao, M. Nano Res. 2023, https://doi.org/10.1007/s12274-12023-15750-12277. |
[22] | Liu, Y.; Liu, J.; Xiong, H.; Chen, J.; Chen, S.; Zeng, Z.; Deng, S.; Wang, J. Nat. Commun. 2022, 13, 5515. |
[23] | Yang, Y.; Li, L.; Lin, R.-B.; Ye, Y.; Yao, Z.; Yang, L.; Xiang, F.; Chen, S.; Zhang, Z.; Xiang, S.; Chen, B. Nat. Chem. 2021, 13, 933. |
[24] | Choe, J. H.; Kim, H.; Kang, M.; Yun, H.; Kim, S. Y.; Lee, S. M.; Hong, C. S. J. Am. Chem. Soc. 2022, 144, 10309. |
[25] | Yan, X.; Qu, H.-M.; Chang, Y.; Duan, X.-X. Acta Chim. Sinica 2022, 80, 1183. (in Chinese) |
[25] | (闫续, 屈贺幂, 常烨, 段学欣, 化学学报, 2022, 80, 1183.) |
[26] | Liu, Y.; Qian, J.; Shi, Y.; Xu, Y.; Mao, Y.; Lv, R.; Huang, B.; Sun, Y.; Zhao, Z.; Chang, Y.; Xing, R.; Pang, H. Sustainable Mater. Technol. 2023, 36, e00588. |
[27] | Chen, Y.; Guerin, S.; Yuan, H.; O’Donnell, J.; Xue, B.; Cazade, P.-A.; Haq, E. U.; Shimon, L. J. W.; Rencus-Lazar, S.; Tofail, S. A. M.; Cao, Y.; Thompson, D.; Yang, R.; Gazit, E. J. Am. Chem. Soc. 2022, 144, 3468. |
[28] | Peng, P.; Anastasopoulou, A.; Brooks, K.; Furukawa, H.; Bowden, M. E.; Long, J. R.; Autrey, T.; Breunig, H. Nat. Energy 2022, 7, 448. |
[29] | Hu, J.; Lai, C.; Chen, K.; Wu, Q.; Gu, Y.; Wu, C.; Li, C. Nat. Commun. 2022, 13, 7914. |
[30] | Wang, Z.; Huang, Y.; Xu, K.; Zhong, Y.; He, C.; Jiang, L.; Sun, J.; Rao, Z.; Zhu, J.; Huang, J.; Xiao, F.; Liu, H.; Xia, B. Y. Nat. Commun. 2023, 14, 69. |
[31] | Han, Z.; Wang, K.; Min, H.; Xu, J.; Shi, W.; Cheng, P. Angew. Chem., Int. Ed. 2022, 61, e202204066. |
[32] | Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Angew. Chem., Int. Ed. 2021, 60, 16763. |
[33] | He, Y.; Li, D.; Wu, L.; Yin, X.; Zhang, X.; Patterson, L. H.; Zhang, J. Adv. Funct. Mater. 2023, 33, 2212277. |
[34] | Sun, Z.; Li, T.; Mei, T.; Liu, Y.; Wu, K.; Le, W.; Hu, Y. J. Mater. Chem. B 2023, 11, 3273. |
[35] | Qi, Y.; Ren, S.-S.; Che, Y.; Ye, J.-W.; Ning, G.-L. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
[35] | (齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
[36] | Yaghi, O. M.; Richardson, D. A.; Li, G.; Davis, C. E.; Groy, T. L. MRS Online Proc. Libr. 1994, 371, 15. |
[37] | Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S. Adv. Mater. 2011, 23, 3294. |
[38] | Xu, C.; Sun, K.; Zhou, Y.-X.; Ma, X.; Jiang, H.-L. Chem. Commun. 2018, 54, 2498. |
[39] | Chen, L.; Zhang, X.; Cheng, X.; Xie, Z.; Kuang, Q.; Zheng, L. Nanoscale Adv. 2020, 2, 2628. |
[40] | Mukoyoshi, M.; Kitagawa, H. Chem. Commun. 2022, 58, 10757. |
[41] | Liu, J.; Goetjen, T. A.; Wang, Q.; Knapp, J. G.; Wasson, M. C.; Yang, Y.; Syed, Z. H.; Delferro, M.; Notestein, J. M.; Farha, O. K.; Hupp, J. T. Chem. Soc. Rev. 2022, 51, 1045. |
[42] | Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W.; Huo, F. Adv. Mater. 2021, 33, 2007442. |
[43] | Liu, Y.; Yue, C.; Sun, F.; Bao, W.; Chen, L.; Zeb, Z.; Wang, C.; Ma, S.; Zhang, C.; Sun, D.; Pan, Y.; Huang, Y.; Lu, Y.; Wei, Y. Chem. Eng. J. 2023, 454, 140105. |
[44] | Su, D.; Wang, T.; Li, A.; Ma, Y.; Liu, X.; Wang, C.; Jia, X.; Sun, P.; Liu, F.; Yan, X.; Lu, G. Adv. Funct. Mater. 2022, 32, 2204130. |
[45] | Hermes, S.; Schr?ter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem., Int. Ed. 2005, 44, 6237. |
[46] | Li, L.; Li, Y.; Jiao, L.; Liu, X.; Ma, Z.; Zeng, Y.-J.; Zheng, X.; Jiang, H.-L. J. Am. Chem. Soc. 2022, 144, 17075. |
[47] | Lin, T.; Wang, H.; Cui, C.; Liu, W.; Li, G. Chem. Res. Chin. Univ. 2022, 38, 1309. |
[48] | Habib, N. R.; Asedegbega-Nieto, E.; Taddesse, A. M.; Diaz, I. Dalton Trans. 2021, 50, 10340. |
[49] | Sadakiyo, M. Nanoscale 2022, 14, 3398. |
[50] | Li, B.; Ma, J.-G.; Cheng, P. Small 2019, 15, 1804849. |
[51] | Kollmannsberger, K. L.; Kronthaler, L.; Jinschek, J. R.; Fischer, R. A. Chem. Soc. Rev. 2022, 51, 9933. |
[52] | Chen, L.; Xu, Q. Matter 2019, 1, 57. |
[53] | Yang, S.; Peng, L.; Bulut, S.; Queen, W. L. Chem.-Eur. J. 2019, 25, 2161. |
[54] | Yang, Q.; Xu, Q.; Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774. |
[55] | Shao, S.; Cui, C.; Tang, Z.; Li, G. Nano Res. 2022, 15, 10110. |
[56] | Xiang, W.; Zhang, Y.; Lin, H.; Liu, C.-J. Molecules 2017, 22, 2103. |
[57] | Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; R?nnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. |
[58] | Feng, J.; Li, M.; Zhong, Y.; Xu, Y.; Meng, X.; Zhao, Z.; Feng, C. Microporous Mesoporous Mater. 2020, 294, 109858. |
[59] | Chen, D.; Wei, L.; Yu, Y.; Zhao, L.; Sun, Q.; Han, C.; Lu, J.; Nie, H.; Shao, L.-X.; Qian, J.; Yang, Z. Inorg. Chem. 2022, 61, 15320. |
[60] | Hao, M.; Li, Z. Appl. Catal. B: Environ 2022, 305, 121031. |
[61] | Liu, G.-F.; Qiao, X.-X.; Cai, Y.-L.; Xu, J.-Y.; Yan, Y.; Karadeniz, B.; Lü, J.; Cao, R. ACS Appl. Nano Mater. 2020, 3, 11426. |
[62] | Zhang, X.; Li, X.; Su, S.; Tan, M.; Liu, G.; Wang, Y.; Luo, M. Catal. Sci. Technol. 2023, 13, 705. |
[63] | Liu, Q.; Li, Y.; Fan, Y.; Su, C.-Y.; Li, G. J. Mater. Chem. A 2020, 8, 11442. |
[64] | Grad, O.; Blanita, G.; Lazar, M. D.; Mihet, M. Catalysts 2021, 11, 1412. |
[65] | Liu, H.; Fu, Y.; Wang, X.; Luo, W.; Yang, W. Appl. Catal., A 2022, 643, 118788. |
[66] | Ding, R.-D.; Li, D.-D.; Li, Y.-L.; Yu, J.-H.; Jia, M.-J.; Xu, J.-Q. ACS Appl. Nano Mater. 2021, 4, 4632. |
[67] | Ding, R.-D.; Li, Y.-L.; Leng, F.; Jia, M.-J.; Yu, J.-H.; Hao, X.-F.; Xu, J.-Q. ACS Appl. Nano Mater. 2021, 4, 9790. |
[68] | Zhou, Y.-H.; Cao, X.; Ning, J.; Ji, C.; Cheng, Y.; Gu, J. Int. J. Hydrogen Energy 2020, 45, 31440. |
[69] | Zhu, Q.-L.; Li, J.; Xu, Q. J. Am. Chem. Soc. 2013, 135, 10210. |
[70] | Roy, S.; Pachfule, P.; Xu, Q. Eur. J. Inorg. Chem. 2016, 2016, 4353. |
[71] | Li, J.; Zhu, Q.-L.; Xu, Q. Catal. Sci. Technol. 2015, 5, 525. |
[72] | Qin, Y.; Hao, M.; Wang, J.; Yuan, R.; Li, Z. ACS Appl. Mater. Interfaces 2022, 14, 56930. |
[73] | Qin, Y.; Hao, M.; Ding, Z.; Li, Z. J. Catal. 2022, 410, 156. |
[74] | Cheng, L.; Guo, Q.; Zhao, K.; Li, Y.-M.; Ren, H.; Ji, C.-Y.; Li, W. Catal. Lett. 2023, 153, 1024. |
[75] | Dai, S.; Ngoc, K. P.; Grimaud, L.; Zhang, S.; Tissot, A.; Serre, C. J. Mater. Chem. A 2022, 10, 3201. |
[76] | Lo, W.-S.; Chou, L.-Y.; Young, A. P.; Ren, C.; Goh, T. W.; Williams, B. P.; Li, Y.; Chen, S.-Y.; Ismail, M. N.; Huang, W.; Tsung, C.-K. Chem. Mater. 2021, 33, 1946. |
[77] | Li, B.; Liu, Y.; Cheng, J. Sensors 2022, 22, 7039. |
[78] | Choe, K.; Zheng, F.; Wang, H.; Yuan, Y.; Zhao, W.; Xue, G.; Qiu, X.; Ri, M.; Shi, X.; Wang, Y.; Li, G.; Tang, Z. Angew. Chem., Int. Ed. 2020, 59, 3650. |
[79] | Liu, Y.; Wang, S.; Yu, B.; Zhang, Y.; Kong, X.; Mi, Y.; Zhang, J.; Guo, Z.; Xu, W.; Chen, X. Inorg. Chem. 2020, 59, 13184. |
[80] | Liu, Y.; Shen, Y.; Zhang, W.; Weng, J.; Zhao, M.; Zhu, T.; Chi, Y. R.; Yang, Y.; Zhang, H.; Huo, F. Chem. Commun. 2019, 55, 11770. |
[81] | Chen, B.; Yang, X.; Xu, Y.; Hu, S.; Zeng, X.; Liu, Y.; Tan, K. B.; Huang, J.; Zhan, G. Nanoscale 2022, 14, 15749. |
[82] | Zhong, Y.; Liao, P.; Kang, J.; Liu, Q.; Wang, S.; Li, S.; Liu, X.; Li, G. J. Am. Chem. Soc. 2023, 145, 4659. |
[83] | Li, L.; Li, Z.; Yang, W.; Huang, Y.; Huang, G.; Guan, Q.; Dong, Y.; Lu, J.; Yu, S.-H.; Jiang, H.-L. Chem 2021, 7, 686. |
[84] | Ogiwara, N.; Kobayashi, H.; Inukai, M.; Nishiyama, Y.; Concepción, P.; Rey, F.; Kitagawa, H. Nano Lett. 2020, 20, 426. |
[85] | Guo, M.; Du, Y.; Zhang, M.; Wang, L.; Zhang, X.; Li, G. ACS Sustainable Chem. Eng. 2022, 10, 7485. |
[86] | Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Chem. Sci. 2019, 10, 3289. |
[87] | Zhang, W.; Shi, W.; Ji, W.; Wu, H.; Gu, Z.; Wang, P.; Li, X.; Qin, P.; Zhang, J.; Fan, Y.; Wu, T.; Fu, Y.; Zhang, W.; Huo, F. ACS Catal. 2020, 10, 5805. |
[88] | Song, Y.; Feng, X.; Chen, J. S.; Brzezinski, C.; Xu, Z.; Lin, W. J. Am. Chem. Soc. 2020, 142, 4872. |
/
〈 |
|
〉 |