Investigation on Photoluminescence and Mechanoluminescence of Single Tb3+-doped Intense Green Phosphor
Received date: 2023-05-06
Online published: 2023-06-01
Supported by
National Natural Science Foundation of China(52202177); Fundamental Research Program of Shanxi Province(202103021223262); Fundamental Research Program of Shanxi Province(20210302124054); Natural Science Foundation of Shanxi Normal University(JCYJ2022015)
Mechanoluminescent (ML) materials can directly convert mechanical energy into optical energy and play a significant role in stress monitoring, anti-counterfeiting, etc. However, most of green ML materials need to be synthesized under high temperature and reducing atmosphere, which makes the development of green ML materials urgent. Rare earth ion Tb3+ is regarded as one of the most potential activators in green phosphor materials. In this work, novel single Tb3+-doped β-KMg(PO3)3 green phosphors were synthesized via high temperature solid state method. The structure was characterized via X-ray diffraction (XRD) and scanning electron microscope (SEM). The photoluminescent (PL) properties were studied by excitation and emission spectra. It shows strong f-f transition excitation peaks in the UV region with a high quantum yield of 90.74%. The color coordinate of β-KMg(PO3)3:Tb3+ is close to that of commercial green phosphor, resulting from the 5D4-7FJ (J=6, 5, 4, 3) transition emission of Tb3+. Tb3+ occupies Mg2+ sites, and the defects caused by charge difference are verified by thermoluminescence (TL). The existence of multiple trap levels makes the phosphors possess excellent thermal stability. More importantly, β-KMg(PO3)3:Tb3+ exhibits outstanding ML properties. The trap levels formed by the defects play a significant role in the process of ML. Under the stimulation of mechanical stress, the electrons and holes in the trap levels are released to the excited states and ground states of Tb3+ respectively, and the 5D3-7FJ (J=6, 5, 4) and 5D4-7FJ (J=6, 5, 4, 3) transitions of Tb3+ are realized. Both the powders and the polydimethylsiloxane (PDMS) composite materials show excellent PL and ML properties. The high sensitivity to stress is attributed to the flexible structural framework of β-KMg(PO3)3, which is easy to generate high strain energy. The materials have promising application prospect in solid state lighting, display and stress sensing.
Key words: rare earth ion Tb3+; β-KMg(PO3)3; photoluminescence; mechanoluminescence; defect
Huimin Chen , Long Wang , Pan Zhang , Xilin Bai , Guojun Zhou . Investigation on Photoluminescence and Mechanoluminescence of Single Tb3+-doped Intense Green Phosphor[J]. Acta Chimica Sinica, 2023 , 81(7) : 771 -776 . DOI: 10.6023/A23050209
[1] | Liu W.; Li X. L.; Liu J.; Han X.; Yan J. H.; Kang Z. H.; Lian H. Z. Acta Chim. Sinica 2011, 69, 1565. (in Chinese) |
[1] | (刘伟, 李西林, 刘娟, 韩厦, 闫景辉, 康振辉, 连洪洲, 化学学报, 2011, 69, 1565.) |
[2] | (a) Tu D.; Peng D. F.; Xu C. N. Yoshida A. J. Ceram. Soc. Jpn. 2016, 124, 702. |
[2] | (b) Zhang J. C.; Gao N.; Li L.; Wang S. S.; Shi X. F.; Sun M. Z.; Yan X.; He H. W.; Ning X.; Huang B. L. Qiu J. R. Adv. Funct. Mater. 2021, 31, 2100221. |
[2] | (c) Chen C. J.; Zhuang Y. X.; Tu D.; Wang X. D.; Pan C. F.; Xie R. J. Nano Energy 2020, 68, 104329. |
[2] | (d) Xu C. N.; Watanabe T.; Akiyama M.; Zheng X. G. Appl. Phys. Lett. 1999, 74, 2414. |
[2] | (e) Chang K.; Li Q. Q.; Li Z. Chin. J. Org. Chem. 2020, 40, 3656. (in Chinese) |
[2] | (常凯, 李倩倩, 李振, 有机化学, 2020, 40, 3656.) |
[2] | (f) Liu M. L.; Wu Q.; Shi H. F.; An Z. F.; Huang W. Acta Chim. Sinica 2018, 76, 246. (in Chinese) |
[2] | (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
[3] | (a) Chen B.; Peng D. F.; Lu P.; Sheng Z. P.; Yan K. Y.; Fu Y. Mater. Des. 2023, 226, 111588. |
[3] | (b) Zhuang Y. X.; Xie R. J. Adv. Mater. 2021, 33, 2005925. |
[3] | (c) Li X.; Wang C. F.; Zheng Y. T.; Huang Z. F.; Luo J. C.; Zhu M. J.; Liang T. L.; Ren B. Y.; Zhang X. H.; Wang D.; Ren Z. B.; Qu S.; Zheng W.; Wei X. Y.; Peng D. F. Mater. Des. 2023, 225, 111589. |
[3] | (d) Ma Z. D.; Han Y.; Bai Y. Q.; Liu B.; Wang Z. F. Chem. Eng. J. 2023, 456, 141122. |
[3] | (e) Chen B.; Peng D. F.; Lu P.; Sheng Z. P.; Yan K. Y.; Fu Y. Mater. Des. 2023, 226, 111588. |
[3] | (f) Qian X.; Su M.; Li F. Y.; Song Y. L. Acta Chim. Sinica 2016, 74, 565. (in Chinese) |
[3] | (钱鑫, 苏萌, 李风煜, 宋延林, 化学学报, 2016, 74, 565.) |
[3] | (g) Zhou X. Q.; Ning L. X.; Qiao J. W.; Zhao Y. F.; Xiong P. X.; Xia Z. G. Nat. Commun. 2022, 13, 7589. |
[4] | (a) Tu D.; Xu C. N.; Fujio Y.; Yoshida A. Light Sci. Appl. 2015, 4, e356. |
[4] | (b) Zhou H.; Du Y. D.; Wu C.; Jiang Y. J.; Wang F.; Zhang J. C.; Wang Z. F. J. Lumin. 2018, 203, 683. |
[5] | (a) Tu D.; Xu C. N.; Saito R.; Liu L. S.; Yoshida A. J. Ceram. Soc. Jpn. 2017, 125, 648. |
[5] | (b) Zhang H. W.; Xu C. N.; Terasaki N.; Yamada H. Phys. E 2010, 42, 2872. |
[6] | (a) Chen H. M.; Wu L. W.; Bo F.; Jian J. K.; Wu L.; Zhang H. W.; Zheng L. R.; Kong Y. F.; Zhang Y.; Xu J. J. J. Mater. Chem. C 2019, 7, 7096. |
[6] | (b) Wu L.; Sun S. J.; Bai Y. X.; Xia Z. G.; Wu L. W.; Chen H. M.; Zheng L. R.; Yi H.; Sun T. Q.; Kong Y. F.; Zhang Y.; Xu J. J. Adv. Opt. Mater. 2021, 9, 2100870. |
[7] | Chen H. M.; Lei Y.; Li J. J.; Chen K. X.; Wu L.; Zheng L. R.; Sun T. Q.; Kong Y. F.; Zhang Y.; Xu J. J. Inorg. Chem. 2022, 61, 5495. |
[8] | (a) Chen M. Y.; Xia Z. G.; Molokeev M. S.; Wang T.; Liu Q. L. Chem. Mater. 2017, 29, 1430. |
[8] | (b) Chen M. Y.; Xia Z. G.; Molokeev M. S.; Lin C. C.; Su C. C.; Chuang Y. C.; Liu Q. L. Chem. Mater. 2017, 29, 7563. |
[8] | (c) Wang X. C.; Zhao Z. Y.; Wu Q. S.; Wang C.; Wang Q.; Li Y. Y.; Wang Y. H. J. Mater. Chem. C 2016, 4, 8795. |
[9] | Dou X. H.; Zhao W. R.; Song E. H.; Deng L. L.; Fang X. B.; Min H. C. J. Rare Earths 2012, 30, 739. |
[10] | (a) Qin S. Y.; Bian J.; Han Y.; Ma Z.; Liu B.; Zhang J. C.; Xu X. H.; Wang Z. F. Mater. Res. Bull. 2022, 145, 111535. |
[10] | (b) Li L.; Wei X. T.; Chen Y. H.; Guo C. X.; Yin M. J. Rare Earths 2012, 30, 197. |
[11] | (a) Sun J. Y.; Lai J. L.; Zhu J. C.; Xia Z. G.; Du H. Y. Ceram. Int. 2012, 38, 5341. |
[11] | (b) Tosaka Y. Adachi S. J. Lumin. 2014, 156, 157. |
[11] | (c) Xia Z. G.; Liu R. S. J. Phys. Chem. C 2012, 116, 15604. |
[11] | (d) Sun S. J.; Wu L.; Yi H.; Wu L. W.; Ji J. Y.; Zhang C. L.; Zhang Y.; Kong Y. F.; Xu J. J. Opt. Mater. Express 2016, 6, 1172. |
[11] | (e) Jin Y. H.; Hu Y. H.; Chen L.; Wang X. J.; Mu Z. F.; Ju G. F.; Yang Z. F. Phys. B 2014, 436, 105. |
[11] | (f) Li K.; Shang M. M.; Geng D. L.; Lian H. Z.; Zhang Y.; Fan J.; Lin J. Inorg. Chem. 2014, 53, 6743. |
[12] | (a) Wang X.; Han Y. D.; Hao S. Q.; Yu J. H.; Xu R. R. Acta Chim. Sinica 2012, 70, 1496. (in Chinese) |
[12] | (王曦, 韩义德, 郝素琴, 于吉红, 徐如人, 化学学报, 2012, 70, 1496.) |
[12] | (b) Dou X. H.; Zhao W. R.; Song E. H.; Min H. C. Acta Phys.-Chim. Sin. 2012, 28, 699. (in Chinese) |
[12] | (豆喜华, 赵韦人, 宋恩海, 闵华初, 物理化学学报, 2012, 28, 699.) |
[12] | (c) Cao J. K.; Chen W. P.; Chen L. P.; Sun X. Y.; Guo H. Ceram. Int. 2016, 42, 17834. |
[13] | Liang P.; Zhang H. S.; Huang H. S.; Li S. Y.; Zhang X. T.; Wang Y.; Li L. Q.; Liu Z. H. Acta Chim. Sinica 2023, 81, 371. (in Chinese) |
[13] | (梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏, 化学学报, 2023, 81, 371.) |
[14] | (a) Ratnam B. V.; Jayasimhadri M.; Bhaskar Kumar G.; Jang K.; Kim S. S.; Lee Y. I.; Lim J. M.; Shin D. S.; Song T. K. J. Alloys Compd. 2013, 564, 100. |
[14] | (b) Caldi?o U.; Speghini A.; Bettinelli M. J. Phys.: Condens. Matter 2006, 18, 3499. |
[15] | (a) Zhang J. R.; Huang D. C.; Huang C. C.; Liang S. S.; Zhu H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese) |
[15] | (张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453.) |
[15] | (b) Zhou G. J.; Liu Z. Y.; Huang J. L.; Molokeev M. S.; Xiao Z. W.; Ma C. G.; Xia Z. G. J. Phys. Chem. Lett. 2020, 11, 5956. |
[16] | Xia Z. G.; Miao S. H.; Molokeev M. S.; Chen M. Y.; Liu Q. L. J. Mater. Chem. C 2016, 4, 1336. |
[17] | Huang W. J.; Wen Z. X.; Li L. J.; Ashraf G. A.; Chen L. P.; Lei L.; Guo H.; Li X. M. Ceram. Int. 2022, 48, 17178. |
[18] | Liao J. S.; Qiu B.; Wen H. R.; You W. X. Opt. Mater. 2009, 31, 1513. |
[19] | Zhou X. Q.; Han K.; Wang Y. X.; Jin J. C.; Jiang S. D.; Zhang Q. Y.; Xia Z. G. Adv. Mater. 2023, 35, 2212022. |
[20] | (a) Wang J.; Zhang H. R.; Lei B. F.; Dong H. W.; Zhang H. M.; Liu Y. L.; Zheng M. T.; Xiao Y.; Xie R. J. J. Am. Ceram. Soc. 2015, 98, 1823. |
[20] | (b) Zhou X. Q.; Qiao J. W.; Zhao Y. F.; Han K.; Xia Z. G. Sci. China Mater. 2022, 65, 1103. |
[21] | Chen H. M.; Wu L.; Sun T. Q.; Dong R.; Zheng Z. Z.; Kong Y. F.; Zhang Y.; Xu J. J. Appl. Phys. Lett. 2020, 116, 051904. |
/
〈 |
|
〉 |