Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework
Received date: 2023-04-13
Online published: 2023-06-07
Supported by
National Natural Science Foundation of China(51676103); National Natural Science Foundation of China(21403037); Shandong Province Taishan Scholars Program(ts20190937); Natural Science Foundation of Shandong Province(ZR2020MB045)
Two-dimensional covalent organic frameworks (COFs) are an emerging important class of porous materials with periodically ordered structures consisting of core and linker units held together by strong covalent bonds. Their well-designed architecture, tunable functional properties and good thermal stabilities provide great potential for applications in photoenergy conversion and semiconductors. For the aim to explore the relationship between the structure and properties of COFs, which should be very useful for the design of new type of such attractive photo functional materials, the energy character of organic building units, fragment molecules and periodic two-dimensional planar structures are analyzed for COF66 and COF366. The results show that the structure of periodic planar frameworks will be influenced by the geometry of organic building units. Moreover, the relative energy level of the frontier orbitals of the organic building blocks will affect the ionization potential and electron affinity. And the electronic properties of the COFs are also in the same case. Therefore, the electronic property of organic building units is a key factor for determining the electronic structure of periodic structure of COFs. In addition, the electronic coupling of COFs will be larger if the conjugation of the organic building blocks is better. Then, the valence band maximum and conduction band minimum will be more dispersive, and the charge carrier mobility will get larger.
Xuefeng Liang , Jian Jing , Xin Feng , Yongze Zhao , Xinyuan Tang , Yan He , Lisheng Zhang , Huifang Li . Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework[J]. Acta Chimica Sinica, 2023 , 81(7) : 717 -724 . DOI: 10.6023/A23040134
[1] | Liu X.; Huang D.; Lai C.; Zeng G.; Qin L.; Wang H.; Yi H.; Li B.; Liu S.; Zhang M.; Deng R.; Fu Y.; Li L.; Xue W.; Chen S. Chem. Soc. Rev. 2019, 48, 5266. |
[2] | Li X.; Yadav P.; Loh K. P. Chem. Soc. Rev. 2020, 49, 4835. |
[3] | Yu X. H.; Huang W.; Li Y. G. Acta Chim. Sinica 2022, 80, 1494. (in Chinese) |
[3] | (于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.) |
[4] | Hao T. R.; Zhu Z. Y.; Cai Y. H.; Wang W.; Wang Z.; Liang A. X.; Luo A. Q. Acta Chim. Sinica 2022, 80, 1524. (in Chinese) |
[4] | (浩天瑞霖, 朱子煜, 蔡艳慧, 王微, 王祯, 梁阿新, 罗爱芹, 化学学报, 2022, 80, 1524.) |
[5] | Diercks C. S.; Yaghi O. M. Science 2017, 355, eaal1585. |
[6] | Wang T.; Zhao L.; Wang K. W.; Bai Y. F.; Feng F. Acta Chim. Sinica 2021, 79, 600. (in Chinese) |
[6] | (王涛, 赵璐, 王科伟, 白云峰, 冯锋, 化学学报, 2021, 79, 600.) |
[7] | Sun B.; Zhu C. H.; Liu Y.; Wang C.; Wan L. J.; Wang D. Chem. Mater. 2017, 29, 4367. |
[8] | Huang N.; Wang P.; Addicoat M. A.; Heine T.; Jiang D. Angew. Chem., Int. Ed. 2017, 129, 5064. |
[9] | Gao Q.; Li X.; Ning G. H.; Xu H. S.; Liu C.; Tian B.; Tang W.; Loh K. P. Chem. Mater. 2018, 30, 1762. |
[10] | Lin C. Y.; Zhang D.; Zhao Z.; Xia Z. Adv. Mater. 2018, 30, 1703646. |
[11] | Han X.; Zhang J.; Huang J.; Wu X.; Yuan D.; Liu Y.; Cui Y. Nat. Commun. 2018, 9, 1294. |
[12] | Wang Z. T.; Li H.; Yan S. C.; Fang Q. R. Acta Chim. Sinica 2020, 78, 63. (in Chinese) |
[12] | (王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78, 63.) |
[13] | C?té A. P.; Benin A. I.; Ockwig N. W.; O'Keeffe M.; Matzger A. J.; Yaghi O. M. Science 2005, 310, 1166. |
[14] | Vitaku E.; Dichtel W. R. J. Am. Chem. Soc. 2017, 139, 12911. |
[15] | Jin E.; Asada M.; Xu Q.; Dalapati S.; Addicoat M. A.; Brady M. A.; Xu H.; Nakamura T.; Heine T.; Chen Q.; Jiang D. Science 2017, 357, 673. |
[16] | Lin H.; Chen C.; Zhou T.; Zhang J. Sol. RRL 2021, 5, 2000458. |
[17] | Wan S.; Guo J.; Kim J.; Ihee H.; Jiang D. Angew. Chem., Int. Ed. 2008, 120, 8958. |
[18] | Wang M.; Ballabio M.; Wang M.; Lin H. H.; Biswal B. P.; Han X.; Paasch S.; Brunner E.; Liu P.; Chen M.; Bonn M.; Heine T.; Zhou S.; Cánovas E.; Dong R.; Feng X. J. Am. Chem. Soc. 2019, 141, 16810. |
[19] | Fu Q.; Wang T.; Sun Y.; Zheng N.; Xie Z.; Lu D.; Xu Z.; Wan X.; Zhang Y.; Liu Y. Sci. China: Chem. 2020, 64, 82. |
[20] | Wan S.; Gándara F.; Asano A.; Furukawa H.; Saeki A.; Dey S. K.; Liao L.; Ambrogio M. W.; Botros Y. Y.; Duan X.; Seki S.; Stoddart J. F.; Yaghi O. M. Chem. Mater. 2011, 23, 4094. |
[21] | Joshi T.; Chen C.; Li H.; Diercks C. S.; Wang G.; Waller P. J.; Li H.; Bredas J. L.; Yaghi O. M.; Crommie M. F. Adv. Mater. 2019, 31, 1805941. |
[22] | Li H.; Li H.; Xun S.; Brédas J. L. Chem. Mater. 2020, 32, 9228. |
[23] | Bl?chl P. E. Phys. Rev. B 1994, 50, 17953. |
[24] | Perdew J. P.; Burke K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865. |
[25] | Wu X.; Vargas M. C.; Nayak S. J. Chem. Phys. 2001, 115, 8748. |
[26] | Grimme S.; Antony J.; Ehrlich S.; Krieg H. J. Chem. Phys. 2010, 132, 154104. |
[27] | Monkhorst H. J.; Pack J. D. Phys. Rev. B 1976, 13, 5188. |
[28] | Tkatchenko A.; Scheffler M. Phys. Rev. Lett. 2009, 102, 073005. |
[29] | Van Damme S.; Bultinck P.; Fias S. J. Chem. Theory Comput. 2009, 5, 334. |
[30] | Bultinck P.; Van Alsenoy C.; Ayers P. W.; Carbó-Dorca R. J. Chem. Phys. 2007, 126, 144111. |
[31] | Vanpoucke D. E. P.; Bultinck P.; Van Driessche I. J. Comput. Chem. 2013, 34, 405. |
[32] | Peng L. Adv. Mater. Lett. 2019, 10, 275. |
[33] | Wang V.; Xu N.; Liu J. C.; Tang G.; Geng W. T. Comput. Phys. Commun. 2021, 267, 108033. |
[34] | Kresse G.; Furthmüller J. Comput. Mater. Sci. 1996, 6, 15. |
[35] | Kresse G.; Furthmüller J. Phys. Rev. B 1996, 54, 11169. |
[36] | Reed A. E.; Curtiss L. A.; Weinhold F. Chem. Rev. 1988, 88, 899. |
[37] | (a) Becke A. D.; Johnson E. R. J. Chem. Phys. 2005, 123, 154101. |
[37] | (b) Johnson E. R.; Becke A. D. J. Chem. Phys. 2005, 123, 024101. |
[37] | (c) Johnson E. R.; Becke A. D. J. Chem. Phys. 2006, 124, 174104. |
[38] | Adamo C.; Barone V. J. Chem. Phys. 1999, 110, 6158. |
[39] | Hehre W. J.; Ditchfield R.; Pople J. A. J. Chem. Phys. 1972, 56, 2257. |
[40] | Francl M. M.; Pietro W. J.; Hehre W. J.; Binkley J. S.; Gordon M. S.; DeFrees D. J.; Pople J. A. J. Chem. Phys. 1982, 77, 3654. |
[41] | Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A., Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016. |
[42] | Huang L.; Zhao Y.; Huang Z.; Tang X.; Liang X.; Zhang L.; He Y.; Li H. J. Chem. Phys. 2023, 158, 114701. |
[43] | Li H.; Winget P.; Risko C.; Sears J. S.; Brédas J. L. Phys. Chem. Chem. Phys. 2013, 15, 6293. |
[44] | Shuai Z.; Geng H.; Xu W.; Liao Y.; André J. M. Chem. Soc. Rev. 2014, 43, 2662. |
[45] | Thomas S.; Li H.; Dasari R. R.; Evans A. M.; Castano I.; Allen T. G.; Reid O. G.; Rumbles G.; Dichtel W. R.; Gianneschi N. C.; Marder S. R.; Coropceanu V.; Brédas J. L. Mater. Horizons 2019, 6, 1868. |
[46] | Lin Z.; Choi J. H.; Zhang Q.; Qin W.; Yi S.; Wang P.; Li L.; Wang Y.; Zhang H.; Sun Z.; Wei L.; Zhang S.; Guo T.; Lu Q.; Cho J. H.; Zeng C.; Zhang Z. Phys. Rev. Lett. 2018, 121, 096401. |
[47] | Zhang R. H.; Ren H. Y.; He L. Acta Phys. Sin. 2022, 71, 127302. (in Chinese) |
[47] | (张若寒, 任慧莹, 何林, 物理学报, 2022, 71, 127302.) |
[48] | Chen C.; Joshi T.; Li H.; Chavez A. D.; Pedramrazi Z.; Liu P. N.; Li H.; Dichtel W. R.; Bredas J. L.; Crommie M. F. ACS Nano 2018, 12, 385. |
/
〈 |
|
〉 |