Review

Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs

  • Yi Wan ,
  • Jianghua He ,
  • Yuetao Zhang
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-04

  Online published: 2023-06-07

Supported by

The National Natural Science Foundation of China(22225104); The National Natural Science Foundation of China(22071077); The National Natural Science Foundation of China(21871107); The National Natural Science Foundation of China(21975102)

Abstract

As a newly emerged polymerization strategy, Lewis pair polymerization (LPP) has been widely used in the polymerization of polar olefin monomers and the preparation of functional materials in recent years. With its unique polymerization mechanism and kinetic characteristics, LPP has shown many advantages over the traditional polymerization methods, and accomplished many challenging tasks in polymer synthesis. This review systematically summarizes the research progress of the precision polymerization of the polar olefin monomers into polymers catalyzed by Lewis pairs in terms of molecular weight, molecular weight distribution, stereochemistry, monomer sequence and polymer topology, and proposes the outlook for the problems and challenges existing in the development of LPP.

Cite this article

Yi Wan , Jianghua He , Yuetao Zhang . Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs[J]. Acta Chimica Sinica, 2023 , 81(9) : 1215 -1230 . DOI: 10.6023/A23050196

References

[1]
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y.-X.; Leibfarth, F. A.; Sardon, H. Nature 2022, 603, 803.
[2]
Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y.-X. Nat. Rev. Mater. 2022, 7, 83.
[3]
Andrady, A. L.; Neal, M. A. Phil. Trans. R. Soc. B 2009, 364, 1977.
[4]
Hong, M.; Chen, J.; Chen, E. Y.-X. Chem. Rev. 2018, 118, 10551.
[5]
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400.
[6]
Stephan, D. W. Science 2016, 354, aaf7229.
[7]
Lam, J.; Szkop, K. M.; Mosaferi, E.; Stephan, D. W. Chem. Soc. Rev. 2019, 48, 3592.
[8]
Guan, Y.; Chang, K.; Sun, Q.; Xu, X. Chin. J. Org. Chem. 2022, 42, 1326. (in Chinese)
[8]
(管怡雯, 常克俭, 孙千林, 徐信, 有机化学, 2022, 42, 1326.)
[9]
Zhang, Y.; Miyake, G. M.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2010, 49, 10158.
[10]
Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton Trans. 2012, 41, 9119.
[11]
He, J.; Zhang, Y.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Macromolecules 2014, 47, 7765.
[12]
Jia, Y.-B.; Wang, Y.-B.; Ren, W.-M.; Xu, T.; Wang, J.; Lu, X.-B. Macromolecules 2014, 47, 1966.
[13]
Knaus, M. G. M.; Giuman, M. M.; P?thig, A.; Rieger, B. J. Am. Chem. Soc. 2016, 138, 7776.
[14]
Xu, P.; Yao, Y.; Xu, X. Chemistry 2017, 23, 1263.
[15]
Xu, T.; Li, C. Prog. Chem. 2015, 27, 1087. (in Chinese)
[15]
(徐铁齐, 李长宏, 化学进展, 2015, 27, 1087.)
[16]
Zhao, W.; He, J.; Zhang, Y. Sci. Bull. 2019, 64, 1830.
[17]
Bai, Y.; Zhang, Y.-T. Acta Polymerica Sinica 2019, 50, 233. (in Chinese)
[17]
(白云, 张越涛, 高分子学报, 2019, 50, 233.)
[18]
Wang, Q.; Zhao, W.; Zhang, S.; He, J.; Zhang, Y.; Chen, E. Y.-X. ACS Catal. 2018, 8, 3571.
[19]
Wang, H.; Wang, Q.; He, J.; Zhang, Y. Polym. Chem. 2019, 10, 3597.
[20]
Jia, Y.-B.; Ren, W.-M.; Liu, S.-J.; Xu, T.; Wang, Y.-B.; Lu, X.-B. ACS Macro Lett 2014, 3, 896.
[21]
Zhang, P.; Zhou, H.; Lu, X.-B. Macromolecules 2019, 52, 4520.
[22]
Zhao, W.; Wang, Q.; He, J.; Zhang, Y. Polym. Chem. 2019, 10, 4328.
[23]
Bai, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2018, 57, 17230.
[24]
Weiss, C. J.; Marks, T. J. Dalton Trans. 2010, 39, 6576.
[25]
Xu, T.; Chen, E. Y.-X. J. Am. Chem. Soc. 2014, 136, 1774.
[26]
Hu, L.; He, J.; Zhang, Y.; Chen, E. Y.-X. Macromolecules 2018, 51, 1296.
[27]
Hu, L.; Zhao, W.; He, J.; Zhang, Y. Molecules 2018, 23, 665.
[28]
Bai, Y.; Wang, H.; He, J.; Zhang, Y. Polym. Chem. 2021, 12, 5548.
[29]
Baskaran, D. Prog. Polym. Sci. 2003, 28, 521.
[30]
Zhang, Z.-H.; Wang, X.; Wang, X.-J.; Li, Y.; Hong, M. Macromolecules 2021, 54, 8495.
[31]
Zhang, Z.-H.; Wang, X.; Weng, B.; Zhang, Y.; Zhang, G.; Hong, M. ACS Polym. Au 2022, 2, 266.
[32]
Zhang, Z.-X.; Wu, X.-Y.; Hong, M. Acta Polymerica Sinica 2022, 53, 1150. (in Chinese)
[32]
(张振兴, 吴小余, 洪缪, 高分子学报, 2022, 53, 1150.)
[33]
Beyer, V. P.; Kim, J.; Becer, C. R. Polym. Chem. 2020, 11, 1271.
[34]
Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Science 2012, 336, 434.
[35]
Bai, Y.; Wang, H.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 11613.
[36]
Wan, X.-H. Acta Polymerica Sinica 2020, 51, 569. (in Chinese)
[36]
(宛新华, 高分子学报, 2020, 51, 569.)
[37]
Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal, A.; Whittaker, M. R.; Davis, T. P.; Haddleton, D. M. Nat. Chem. 2017, 9, 171.
[38]
Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Nat. Commun. 2013, 4, 2505.
[39]
Mcgraw, M. L.; Clarke, R. W.; Chen, E. Y.-X. J. Am. Chem. Soc. 2020, 142, 5969.
[40]
Li, C.; Zhao, W.; He, J.; Zhang, Y.; Zhang, W. Angew. Chem. Int. Ed. 2022, 61, e202202448.
[41]
Bai, Y.; Wang, H.; He, J.; Zhang, Y.; Chen, E. Y.-X. Nat. Commun. 2021, 12, 4874.
[42]
Wan, Y.; He, J.; Zhang, Y.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2022, 61, e202114946.
[43]
Reilly, L. T.; Mcgraw, M. L.; Eckstrom, F. D.; Clarke, R. W.; Franklin, K. A.; Chokkapu, E. R.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 23572.
[44]
Wan, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2023, 62, e202218248.
[45]
Kametani, Y.; Tournilhac, F.; Sawamoto, M.; Ouchi, M. Angew. Chem. Int. Ed. 2020, 59, 5193.
[46]
Shibata, K.; Kametani, Y.; Daito, Y.; Ouchi, M. J. Am. Chem. Soc. 2022, 144, 9959.
[47]
Gerdt, P.; Studer, A. Angew. Chem. Int. Ed. 2022, 61, e202206964.
[48]
Zhao, W.; Li, F.; Li, C.; He, J.; Zhang, Y.; Chen, C. Angew. Chem. Int. Ed. 2022, 60, 24306.
[49]
Wang, X.; Hong, M. Macromolecules 2020, 53, 4659.
[50]
Zhou, Y.; Jiang, S.; Xu, X. Chin. J. Chem. 2020, 39, 149.
[51]
Guan, Z. Chem. Asian. J. 2010, 5, 1058.
[52]
Doi, Y.; Matsubara, K.; Ohta, Y.; Nakano, T.; Kawaguchi, D.; Takahashi, Y.; Takano, A.; Matsushita, Y. Macromolecules 2015, 48, 3140.
[53]
Gambino, T.; Martínez De Ilarduya, A.; Alegría, A.; Barroso-Bujans, F. Macromolecules 2016, 49, 1060.
[54]
Hosoi, Y.; Takasu, A.; Matsuoka, S.-I.; Hayashi, M. J. Am. Chem. Soc. 2017, 139, 15005.
[55]
Oga, Y.; Hosoi, Y.; Takasu, A. Polymer 2020, 186, 122019.
[56]
Mcgraw, M. L.; Clarke, R. W.; Chen, E. Y.-X. J. Am. Chem. Soc. 2021, 143, 3318.
[57]
Zhao, W.; Wang, Q.; He, J.; Zhang, Y. Macromol. Rapid Commun. 2022, 43, e2200088.
[58]
Mcgraw, M. L.; Reilly, L. T.; Clarke, R. W.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2022, 61, e202116303.
[59]
Song, Y.; He, J.; Zhang, Y.; Gilsdorf, R. A.; Chen, E. Y.-X. Nat. Chem. 2023, 15, 366.
[60]
Wang, X.-H.; Wan, X.-H. Acta Polymerica Sinica 2023, 54, 409. (in Chinese)
[60]
(王献红, 宛新华, 高分子学报, 2023, 54, 409.)
Outlines

/