Review

Application of Chemical Biology to Reveal the Function of O-GlcNAcylation in Diseases: Research Tools and Tactics

  • Nana Zhang ,
  • Kairan Yu ,
  • Jiting Li ,
  • Jianing Zhang ,
  • Yubo Liu
Expand
  • School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 122406, China

Received date: 2023-02-19

  Online published: 2023-06-07

Supported by

National Natural Science Foundation of China(21975163); National Natural Science Foundation of China(32171282)

Abstract

The addition of O-linked-β-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant and unique post-translational modification that plays a critical role in governing important biological processes. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular processes, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. O-GlcNAcylation is a dynamic and reversible post-translational modification that regulates protein function in a site-specific manner, making it an important player in the regulation of diverse biological processes. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of various diseases, including cancer, neurodegenerative disorders, and diabetes. To better understand the regulatory roles of O-GlcNAcylation in cellular physiology and disease pathogenesis, O-GlcNAc proteomics strategies and more specialized, more exact research tools are needed to further explore the bio-functional systematization of O-GlcNAcylation. In recent years, the field of chemical biology has developed various tools and methods for analyzing O-GlcNAc glycosylation, including small molecule sugar probes, metabolic labeling reagents, chemoenzymatic techniques, specific antibodies, and lectins. These tools have served as a foundation for the further development of O-GlcNAc glycoproteomic research strategies. O-GlcNAc glycoproteomic strategies, such as high-resolution mass spectrometry-based approaches have been developed to allow for the detection and quantification of O-GlcNAc modifications on specific proteins, enabling site-specific analysis of O-GlcNAc modification patterns. The number of proteins modified by O-GlcNAc is quite extensive, with at least 7000 modification sites identified in human cells. This highlights the importance of O-GlcNAcylation in regulating diverse biological processes. Identification of O-GlcNAcylation sites with specific biological functions is still a remaining problem. Innovative solutions are required to address this challenge in cell models and disease therapy. At the same time, with the aid of high-resolution mass spectrometry, a large number of O-GlcNAc modification sites on proteins have been identified, which has greatly promoted the study of site-specific O-GlcNAc biological functions. This article has reviewed the recent advances in the field of O-GlcNAc research, with the aim of providing a basis for the development of more chemical tools and offering new research ideas and strategies for uncovering the functions of O-GlcNAcylation in disease progression.

Cite this article

Nana Zhang , Kairan Yu , Jiting Li , Jianing Zhang , Yubo Liu . Application of Chemical Biology to Reveal the Function of O-GlcNAcylation in Diseases: Research Tools and Tactics[J]. Acta Chimica Sinica, 2023 , 81(7) : 843 -856 . DOI: 10.6023/A23020040

References

[1]
Holt G. D.; Hart G. W. J. Biol. Chem. 1986, 261, 8049.
[2]
Shi Q.; Shen Q.; Liu Y. Cancer Cell 2022, 40, 1207.
[3]
Hart G. W.; Akimoto Y. The O-GlcNAc Modification, Ed.: Varki, A., New York, 2009, Chapter 18.
[4]
Peterson S. B.; Hart G. W. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 150.
[5]
Vaidyanathan K.; Wells L. J. Biol. Chem. 2014, 289, 34466.
[6]
Akan I.; Olivier-Van Stichelen S.; Bond M. R. J. Neurochem. 2018, 144, 7.
[7]
Banerjee P. S.; Lagerl?f O.; Hart G. W. Mol. Aspects Med. 2016, 51, 1.
[8]
Nie H.; Yi W. J. Zhejiang Univ. Sci. B 2019, 20, 437.
[9]
Phueaouan T.; Chaiyawat P.; Netsirisawan P. Oncol. Rep. 2013, 30, 2929.
[10]
Ma Z.; Vocadlo D. J.; Vosseller K. J. Biol. Chem. 2013, 288, 15121.
[11]
Jin F. Z.; Yu C.; Zhao D. Z. Exp. Cell Res. 2013, 319, 1482.
[12]
Huang X.; Pan Q.; Sun D. J. Biol. Chem. 2013, 288, 36418.
[13]
Shi Y.; Tomic J.; Wen F. Leukemia 2010, 24, 1588.
[14]
Dauphinee S. M.; Ma M.; Too C. K. J. Cell Biochem. 2005, 96, 579.
[15]
Slawson C.; Hart G. W. Nat. Rev. Cancer 2011, 11, 678.
[16]
Shafi R.; Iyer S. P.; Ellies L. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5735.
[17]
Yang Y. R.; Song M.; Lee H. Aging Cell 2012, 11, 439.
[18]
Ferrer C. M.; Lynch T. P.; Sodi V. L. Mol. Cell 2014, 54, 820.
[19]
Alteen M. G.; Tan H. Y.; Vocadlo D. J. Curr. Opin. Struct. Biol. 2021, 68, 157.
[20]
Wang Y. Acta Chim. Sinica 2013, 71, 1477. (in Chinese)
[20]
(王玥, 化学学报, 2013, 71, 1477.)
[21]
Konrad R. J.; Zhang F.; Hale J. E. Biochem. Biophys. Res. Commun. 2002, 293, 207.
[22]
Vibjerg Jensen R.; Johnsen J.; Buus Kristiansen S. Scand Cardiovasc J. 2013, 47, 168.
[23]
Borodkin V. S.; Schimpl M.; Gundogdu M. Biochem. J. 2014, 457, 497.
[24]
Gloster T. M.; Zandberg W. F.; Heinonen J. E. Nat. Chem. Biol. 2011, 7, 174.
[25]
Sodi V. L.; Bacigalupa Z. A.; Ferrer C. M. Oncogene 2018, 37, 924.
[26]
Liu T. W.; Zandberg W. F.; Gloster T. M. Angew. Chem. Int. Ed. 2018, 57, 7644.
[27]
Rafie K.; Gorelik A.; Trapannone R. Bioconjug. Chem. 2018, 29, 1834.
[28]
Gross B. J.; Kraybill B. C.; Walker S. J. Am. Chem. Soc. 2005, 127, 14588.
[29]
Jiang J.; Lazarus M. B.; Pasquina L. Nat. Chem. Biol. 2011, 8, 72.
[30]
Ortiz-Meoz R. F.; Jiang J.; Lazarus M. B. ACS Chem. Biol. 2015, 10, 1392.
[31]
Rahman M. A.; Cho Y.; Hwang H. Brain Sci. 2020, 10, 958.
[32]
Liu Y.; Cao Y.; Pan X. Cell Death Dis. 2018, 9, 485.
[33]
Lee S. J.; Lee D. E.; Choi S. Y. Int. J. Mol. Sci. 2021, 22, 11073.
[34]
Lee S. J.; Kwon O. S. Cancers (Basel) 2020, 12, 3154.
[35]
Luanpitpong S.; Kang X.; Janan M. Stem Cell Res. Ther. 2022, 13, 274.
[36]
Martin S. E. S.; Tan Z.-W.; Itkonen H. M. J. Am. Chem. Soc. 2018, 140, 13542.
[37]
Liu X.; Song S.; Chen Z. Acta Biomater. 2022, 151, 148.
[38]
Wang Y.; Zhu J.; Zhang L. J. Med. Chem. 2017, 60, 263.
[39]
Liu Y.; Ren Y.; Cao Y. Sci. Rep. 2017, 7, 12334.
[40]
(a) Liu Y. B.; Zhang N. N.; Chen J. J. Chem. J. Chinese Univ. 2018, 39, 1185. (in Chinese)
[40]
(刘宇博, 张娜娜, 陈锦娇, 高等学校化学学报, 2018, 39, 1185.)
[40]
(b) Liu X.; Zhang N.; Cao Y. Chin. Pharmacol. Bull. 2020, 36, 1574. (in Chinese)
[40]
(刘欣, 张娜娜, 曹禺, 中国药理学通报, 2020, 36, 1574.)
[41]
Zhang N.; Zhu T.; Yu K. Cell Death Dis. 2019, 10, 343.
[42]
Huang H.; Wu Q.; Guo X. J. Cell Physiol. 2021, 236, 7491.
[43]
Albuquerque S. O.; Barros T. G.; Dias L. R. S. Eur. J. Pharm. Sci. 2020, 154, 105510.
[44]
Horsch M.; Hoesch L.; Vasella A. Eur. J. Biochem. 1991, 197, 815.
[45]
Laczy B.; Marsh S. A.; Brocks C. A. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1715.
[46]
Macauley M. S.; Whitworth G. E.; Debowski A. W. J. Biol. Chem. 2005, 280, 25313.
[47]
Macauley M. S.; He Y.; Gloster T. M. Chem. Biol. 2010, 17, 937.
[48]
Dorfmueller H. C.; Borodkin V. S.; Schimpl M. J. Am. Chem. Soc. 2006, 128, 16484.
[49]
Yuzwa S. A.; Macauley M. S.; Heinonen J. E. Nat. Chem. Biol. 2008, 4, 483.
[50]
Hilgers R. H.; Xing D.; Gong K. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H513.
[51]
Zhu Q.; Zhou H.; Wu L. Nat. Chem. Biol. 2022, 18, 1087.
[52]
Selnick H. G.; Hess J. F.; Tang C. J. Med. Chem. 2019, 62, 10062.
[53]
Yang Y.; Li X.; Luan H. H. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 16616.
[54]
Martínez-Viturro C. M.; Trabanco A. A.; Royes J. J. Med. Chem. 2020, 63, 14017.
[55]
González-Cuesta M.; Sidhu P.; Ashmus R. A. J. Am. Chem. Soc. 2022, 144, 832.
[56]
Klein A. L.; Berkaw M. N.; Buse M. G. Mol. Cell. Proteomics 2009, 8, 2733.
[57]
Snow C. M.; Senior A.; Gerace L. J. Cell. Biol. 1987, 104, 1143.
[58]
Comer F. I.; Vosseller K.; Wells L. Anal. Biochem. 2001, 293, 169.
[59]
Turner J. R.; Tartakoff A. M.; Greenspan N. S. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 5608.
[60]
Yoshida N.; Mortara R. A.; Araguth M. F. Infect Immun, 1989, 57, 1663.
[61]
Teo C. F.; Ingale S.; Wolfert M. A. Nat. Chem. Biol. 2010, 6, 338.
[62]
Kamemura K.; Hayes B. K.; Comer F. I. J. Biol. Chem. 2002, 277, 19229.
[63]
Yuzwa S. A.; Yadav A. K.; Skorobogatko Y. Amino Acids 2011, 40, 857.
[64]
Hirosawa M.; Hayakawa K.; Yoneda C. Sci. Rep. 2016, 6, 31785.
[65]
Pathak S.; Borodkin V. S.; Albarbarawi O. Embo J. 2012, 31, 1394.
[66]
Fujioka K.; Kubota Y.; Takekawa M. Bio-protocol 2018, 8, e3098.
[67]
Soesanto Y. A.; Luo B.; Jones D. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E974.
[68]
Diwu Y.; Tian J.; Shi J. J. Tradit. Chin. Med. 2013, 33, 367.
[69]
Ma Z. Y.; Skorobogatko Y.; Vosseller K. Methods Mol. Biol. 2013, 951, 21.
[70]
Vosseller K.; Trinidad J. C.; Chalkley R. J. Mol. Cell. Proteomics 2006, 5, 923.
[71]
Liu W.; Han G.; Yin Y. Glycobiology 2018, 28, 363.
[72]
Su Y.; Ye X.; Xu B. Glycobiology 2020, 30, 159.
[73]
Schimpl M.; Borodkin V. S.; Gray L. J. Chem. Biol. 2012, 19, 173.
[74]
Mariappa D.; Selvan N.; Borodkin V. Biochem. J. 2015, 470, 255.
[75]
Selvan N.; Williamson R.; Mariappa D. Nat. Chem. Biol. 2017, 13, 882.
[76]
Song J.; Liu C.; Wang X. ACS Chem. Biol. 2021, 16, 1040.
[77]
Isono T. PLOS ONE 2011, 6, e18959.
[78]
Gilormini P. A.; Batt A. R.; Pratt M. R. Chem. Sci. 2018, 9, 7585.
[79]
Cheng B.; Tang Q.; Zhang C. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2021, 14, 363.
[80]
Vocadlo D. J.; Hang H. C.; Kim E. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9116.
[81]
Yu S. H.; Boyce M.; Wands A. M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4834.
[82]
Zhu Y.; Wu J.; Chen X. Angew. Chem. Int. Ed. 2016, 55, 9301.
[83]
Hang H. C.; Yu C.; Kato D. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 14846.
[84]
Boyce M.; Carrico I. S.; Ganguli A. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 3141.
[85]
Xu S.; Zheng J.; Xiao H. Anal. Chem. 2022, 94, 3343.
[86]
Zhu Y.; Willems L. I.; Salas D. J. Am. Chem. Soc. 2020, 142, 15729.
[87]
Lin W.; Gao L.; Chen X. ChemBioChem 2015, 16, 2571.
[88]
Qin W.; Qin K.; Fan X. Angew. Chem. Int. Ed. 2018, 57, 1817.
[89]
Hao Y.; Fan X.; Shi Y. Nat. Commun. 2019, 10, 4065.
[90]
Qin K.; Zhang H.; Zhao Z. J. Am. Chem. Soc. 2020, 142, 9382.
[91]
Zaro B. W.; Yang Y. Y.; Hang H. C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8146.
[92]
Chuh K. N.; Zaro B. W.; Piller F. J. Am. Chem. Soc. 2014, 136, 12283.
[93]
Chuh K. N.; Batt A. R.; Zaro B. W. J. Am. Chem. Soc. 2017, 139, 7872.
[94]
Darabedian N.; Gao J.; Chuh K. N. J. Am. Chem. Soc. 2018, 140, 7092.
[95]
Pedowitz N. J.; Jackson E. G.; Overhulse J. M. ACS Chem. Biol. 2021, 16, 1924.
[96]
Lin W.; Gao L.; Chen X. Chembiochem 2015, 16, 2571.
[97]
Torres C. R.; Hart G. W. J. Biol. Chem. 1984, 259, 3308.
[98]
Khidekel N.; Arndt S.; Lamarre-Vincent N. J. Am. Chem. Soc. 2003, 125, 16162.
[99]
Clark P. M.; Dweck J. F.; Mason D. E. J. Am. Chem. Soc. 2008, 130, 11576.
[100]
Balana A. T.; Mukherjee A.; Nagpal H. J. Am. Chem. Soc. 2021, 143, 16030.
[101]
Khidekel N.; Ficarro S. B.; Peters E. C. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 13132.
[102]
Aguilar A. L.; Hou X.; Wen L. Chembiochem 2017, 18, 2416.
[103]
Tian Y.; Zhu Q.; Sun Z. Angew. Chem. Int. Ed. 2021, 60, 26128.
[104]
Chen Y.; Tang F.; Qin H. Angew. Chem. Int. Ed. 2022, 61, e202117849.
[105]
Rexach J. E.; Rogers C. J.; Yu S. H. Nat. Chem. Biol. 2010, 6, 645.
[106]
Darabedian N.; Thompson J. W.; Chuh K. N. Biochemistry 2018, 57, 5769.
[107]
Qin W.; Lv P.; Fan X. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E6749.
[108]
Ma J.; Hart G. W. Clin. Proteomics 2014, 11, 8.
[109]
Thompson J. W.; Sorum A. W.; Hsieh-Wilson L. C. Biochemistry 2018, 57, 4010.
[110]
Maynard J. C.; Chalkley R. J. Mol. Cell. Proteomics 2021, 20, 100031.
[111]
Ma J.; Wu C.; Hart G. W. Chem. Rev. 2021, 121, 1513.
[112]
Li Y. Y.; Peng Y.; Lu H. J. Acta Chim. Sinica 2021, 79, 705. (in Chinese)
[112]
(李月悦, 彭叶, 陆豪杰, 化学学报, 2021, 79, 705.)
[113]
Xu S.; Tong M.; Suttapitugsakul S. Cell Rep. 2022, 39, 110946.
[114]
Hahne H.; Sobotzki N.; Nyberg T. J. Proteome Res. 2013, 12, 927.
[115]
Liu J.; Shao X.; Qin W. Cell Chem. Biol. 2021, 28, 788.
[116]
Liu Y.; Chen Q.; Zhang N. Nat. Commun. 2020, 11, 5898.
[117]
He J.; Fan Z.; Tian Y. J. Am. Chem. Soc. 2022, 144, 4289.
[118]
Liu Y.; Nelson Z. M.; Reda A. ACS Chem. Biol. 2022, 17, 2153.
[119]
Banerjee P. S.; Hart G. W.; Cho J. W. Chem. Soc. Rev. 2013, 42, 4345.
[120]
Wulff-Fuentes E.; Berendt R. R.; Massman L. Sci. Data 2021, 8, 25.
[121]
Ma J.; Li Y.; Hou C. Glycobiology 2021, 31, 719.
[122]
Woo C. M.; Lund P. J.; Huang A. C. Mol. Cell. Proteomics 2018, 17, 764.
[123]
Zhao P.; Viner R.; Teo C. F. J. Proteome Res. 2011, 10, 4088.
[124]
Zhang Y.; Xie X.; Zhao X. J. Proteomics 2018, 170, 14.
[125]
Marino F.; Bern M.; Mommen G. P. M. J. Am. Chem. Soc. 2015, 137, 10922.
[126]
Liu J.; Hao Y.; He Y. ACS Chem. Biol. 2021, 16, 1917.
[127]
Santala V.; Saviranta P. J. Immunol. Methods 2004, 284, 159.
[128]
Wang Z.; Udeshi N. D.; O'Malley M. Mol. Cell. Proteomics 2010, 9, 153.
[129]
Li J.; Li Z.; Duan X. ACS Chem. Biol. 2019, 14, 4.
[130]
Khidekel N.; Ficarro S. B.; Clark P. M. Nat. Chem. Biol. 2007, 3, 339.
[131]
Woo C. M.; Iavarone A. T.; Spiciarich D. R. Nat. Methods 2015, 12, 561.
[132]
Wang S.; Yang F.; Petyuk V. A. J. Pathol. 2017, 243, 78.
[133]
Liu J.; Hao Y.; Wang C. ACS Chem. Biol. 2022, 17, 513.
[134]
Frenkel-Pinter M.; Richman M.; Belostozky A. Chemistry 2016, 22, 5945.
[135]
Levine P. M.; Balana A. T.; Sturchler E. J. Am. Chem. Soc. 2019, 141, 14210.
[136]
Lv P.; Du Y.; He C. Nat. Chem. 2022, 14, 831.
[137]
Li J.; Li Z.; Duan X. ACS Chem. Biol. 2019, 14, 4.
[138]
Yi W.; Clark P. M.; Mason D. E. Science 2012, 337, 975.
[139]
Yang W. H.; Kim J. E.; Nam H. W. Nat. Cell Biol. 2006, 8, 1074.
[140]
Gorelik A.; Bartual S. G.; Borodkin V. S. Nat. Struct. Mol. Biol. 2019, 26, 1071.
[141]
Maynard J. C.; Burlingame A. L.; Medzihradszky K. F. Mol. Cell. Proteomics 2016, 15, 3405.
[142]
Macauley M. S.; Stubbs K. A.; Vocadlo D. J. J. Am. Chem. Soc. 2005, 127, 17202.
[143]
Tegl G.; Hanson J.; Chen H. M. Angew. Chem. Int. Ed. 2019, 58, 1632.
[144]
Ramirez D. H.; Aonbangkhen C.; Wu H. Y. ACS Chem. Biol. 2020, 15, 1059.
[145]
Ge Y.; Ramirez D. H.; Yang B. Nat. Chem. Biol. 2021, 17, 593.
[146]
Gupta R.; Brunak S. Pac Symp Biocomput 2002, 310.
[147]
Hamby S. E.; Hirst J. D. BMC Bioinformatics 2008, 9, 500.
[148]
Hornbeck P. V.; Kornhauser J. M.; Latham V. Nucleic Acids Res. 2019, 47, D433.
[149]
York W. S.; Mazumder R.; Ranzinger R. Glycobiology 2020, 30, 72.
[150]
Huang K. Y.; Lee T. Y.; Kao H. J. Nucleic Acids Res. 2019, 47, D298.
[151]
Cekic N.; Heinonen J. E.; Stubbs K. A. Chem. Sci. 2016, 7, 3742.
Outlines

/