Supramolecular Secondary Assembly Based on Amphiphilic Calix[4]arenes and Its Biological Applications★
Received date: 2023-04-27
Online published: 2023-06-12
Supported by
National Natural Science Foundation of China(22131008)
The multivalent or multilevel supramolecular assembly of macrocyclic compounds and its applications in biology, chemistry and materials is one of the current research hotspots, among which the supramolecular assembly of amphiphilic cupric aromatic hydrocarbons is notable. The recent studies on the secondary supramolecular assembly of calixarenes and their biological applications are reviewed, including: (1) the secondary assembly of amphiphilic calixarenes bonded guest molecules with macromolecules and its biological applications; (2) the secondary assembly of cucurbiturils bonded guest molecules with amphiphilic calixarenes and its biological applications. Compared with the primary assembly, the secondary assembly of amphiphilic calixarenes can improve the hydrophobicity of the microenvironment of supramolecular assemblies, while it can co-assemble with dye molecules, drug molecules, and light-controlled smart molecules to form supramolecular assemblies such as nanorods, nanoparticles, and nanofibers, which can not only further regulate guest molecules to promote luminescence behavior, but also promote energy transfer and cascade energy transfer. The secondary supramolecular assemblies constructed based on amphiphilic calixarenes with light-responsive, pH-responsive, and redox-responsive properties can be used in research fields such as bioimaging, targeted drug delivery, and information anti-counterfeiting, which have broad application prospects. We hope that this review will provide new ideas to conduct research on multidimensional and multilevel assembly of supramolecules and their biological applications, which will further promote the development of supramolecular chemistry.
Yongxue Li , Yu Liu . Supramolecular Secondary Assembly Based on Amphiphilic Calix[4]arenes and Its Biological Applications★[J]. Acta Chimica Sinica, 2023 , 81(8) : 928 -936 . DOI: 10.6023/A23040171
| [1] | Gutsche C. D.; Dhawan B.; No K. H.; Muthukrishnan R. J. Am. Chem. Soc. 2002, 103, 3782. |
| [2] | B?hmer V. Angew. Chem., Int. Ed. 1995, 34, 713. |
| [3] | Li P. Y.; Chen Y.; Liu Y. Chin. Chem. Lett. 2019, 30, 1190. |
| [4] | Wang Z.; Guo D.; Zhang J.; Liu Y. Acta. Chim. Sinica. 2012, 70, 1709. (in Chinese) |
| [4] | ( 王振, 郭东升, 张捷, 刘育, 化学学报, 2012, 70, 1709.) |
| [5] | Ryu E. H.; Zhao Y. Org. Lett. 2005, 7, 1035. |
| [6] | Katz J. L.; Feldman M. B.; Conry R. R. Org. Lett. 2005, 7, 91. |
| [7] | Nimse S. B.; Kim T. Chem. Soc. Rev. 2013, 42, 366. |
| [8] | Zheng Z.; Geng W. C.; Gao J.; Wang Y. Y.; Sun H.; Guo D. S. Chem. Sci. 2018, 9, 2087. |
| [9] | Tian H. W.; Liu Y. C.; Guo D. S. Mater. Chem. Front. 2020, 4, 46. |
| [10] | Liu Y. H.; Liu Y. Prog. Chem. 2019, 31, 1528. (in Chinese) |
| [10] | ( 刘耀华, 刘育, 化学进展, 2019, 31, 1528.) |
| [11] | Dong R.; Ravinathan S. P.; Xue L.; Li N.; Zhang Y.; Zhou L.; Cao C.; Zhu X. Chem. Commun. 2016, 52, 7950. |
| [12] | Hu X. Y.; Chen Y.; Liu Y. Chin. Chem. Lett. 2015, 26, 862. |
| [13] | Liu Z.; Dai X.; Sun Y.; Liu Y. Aggregate 2020, 1, 31. |
| [14] | Pan Y. C.; Hu X. Y.; Guo D. S. Angew. Chem., Int. Ed. 2021, 60, 2768. |
| [15] | Xu M. C.; Tian J. Z.; Yang Y. H.; Gou G. Z.; Li F. M.; Shao L.; Chi K. X. Chin. J. Org. Chem. 2023, 43, 1824. (in Chinese) |
| [15] | ( 徐茂财, 田佳壮, 杨艳华, 苟高章, 李福敏, 邵林, 池可心, 有机化学, 2023, 43, 1824.) |
| [16] | Wang Y. X.; Liu Y. Acta Chim. Sinica 2015, 73, 984. (in Chinese) |
| [16] | ( 王以轩, 刘育, 化学学报, 2015, 73, 984.) |
| [17] | Guo D. S.; Wang K.; Wang Y. X.; Liu Y. J. Am. Chem. Soc. 2012, 134, 10244. |
| [18] | Cao Y.; Wang Y.; Guo D.; Liu Y. Sci. China Chem. 2013, 57, 371. |
| [19] | Guo D. S.; Liu Y. Acc. Chem. Res. 2014, 47, 1925. |
| [20] | Wang K.; Guo D. S.; Liu Y. Chem. Eur. J. 2010, 16, 8006. |
| [21] | Wang K.; Guo D. S.; Liu Y. Chem. Eur. J. 2012, 18, 8758. |
| [22] | Wang K.; Guo D. S.; Wang X.; Liu Y. ACS Nano. 2011, 5, 2880. |
| [23] | Nie H.; Wei Z.; Ni X. L.; Liu Y. Chem. Rev. 2022, 122, 9032. |
| [24] | Chen X. M.; Chen Y.; Yu Q.; Gu B. H.; Liu Y. Angew. Chem., Int. Ed. 2018, 57, 12519. |
| [25] | Ma X.; Wang J.; Tian H. Acc. Chem. Res. 2019, 52, 738. |
| [26] | Ma X. K.; Liu Y. Acc. Chem. Res. 2021, 54, 3403. |
| [27] | Zhang T.; Ma X.; Wu H.; Zhu L.; Zhao Y.; Tian H. Angew. Chem., Int. Ed. 2020, 59, 11206. |
| [28] | Liu Y. W.; Ma L. W.; Wang Q. C.; Ma X. Acta. Chim. Sinica 2023, 81, 445. (in Chinese) |
| [28] | ( 刘懿玮, 马良伟, 王巧纯, 马骧, 化学学报, 2023, 81, 445.) |
| [29] | Liu L.; Hao T. T.; Wu W. H.; Yang C. Chin. J. Org. Chem. 2023, 43, 2189. (in Chinese) |
| [29] | ( 刘铃, 浩涛涛, 伍晚花, 杨成, 有机化学, 2023, 43, 2189.) |
| [30] | Zhang X.; Hou L.; Samori P. Nat. Commun. 2016, 7, 11118. |
| [31] | Kabe R.; Notsuka N.; Yoshida K.; Adachi C. Adv. Mater. 2016, 28, 655. |
| [32] | Zhang Z. Y.; Chen Y.; Liu Y. Angew. Chem., Int. Ed. 2019, 58, 6028. |
| [33] | Su Y.; Phua S. Z. F.; Li Y.; Zhou X.; Jana D.; Liu G.; Lim W. Q.; Ong W. K.; Yang C.; Zhao Y. Sci. Adv. 2018, 4, eaas9732. |
| [34] | An Z.; Zheng C.; Tao Y.; Chen R.; Shi H.; Chen T.; Wang Z.; Li H.; Deng R.; Liu X.; Huang W. Nature Materials 2015, 14, 685. |
| [35] | Zhang Y.; Yang H.; Ma H.; Bian G.; Zang Q.; Sun J.; Zhang C.; An Z.; Wong W. Y. Angew. Chem., Int. Ed. 2019, 58, 8773. |
| [36] | Hu Y. Y.; Dai X. Y.; Dong X.; Huo M.; Liu Y. Angew. Chem., Int. Ed. 2022, 61, e202213097. |
| [37] | Liang B. S.; An W.; Liu J.; Dong Y.; Feng S. Y.; Huang W. G. Chin. J. Chem. 2023, 41, 2261. |
| [38] | Zhang G.; Palmer G. M.; Dewhirst M. W.; Fraser C. L. Nature Materials 2009, 8, 747. |
| [39] | Maldiney T.; Lecointre A.; Viana B.; Bessiere A.; Bessodes M.; Gourier D.; Richard C.; Scherman D. J. Am. Chem. Soc. 2011, 133, 1181. |
| [40] | Maldiney T.; Bessiere A.; Seguin J.; Teston E.; Sharma S. K.; Viana B.; Bos A. J.; Dorenbos P.; Bessodes M.; Gourier D.; Scherman D.; Richard C. Nature Materials 2014, 13, 418. |
| [41] | Zhou W. L.; Chen Y.; Yu Q.; Zhang H.; Liu Z. X.; Dai X. Y.; Li J. J.; Liu Y. Nat. Commun. 2020, 11, 4655. |
| [42] | Ma X. K.; Zhang Y. M.; Yu Q.; Zhang H.; Zhang Z.; Liu Y. Chem. Commun. 2021, 57, 1214. |
| [43] | Dai X. Y.; Hu Y. Y.; Sun Y.; Huo M.; Dong X.; Liu Y. Adv. Sci. 2022, 9, e2200524. |
| [44] | Huo M.; Dai X. Y.; Liu Y. Angew. Chem., Int. Ed. 2021, 60, 27171. |
| [45] | Wang X. F.; Xiao H.; Chen P. Z.; Yang Q. Z.; Chen B.; Tung C. H.; Chen Y. Z.; Wu L. Z. J. Am. Chem. Soc. 2019, 141, 5045. |
| [46] | Ma X. K.; Zhou X.; Wu J.; Shen F. F.; Liu Y. Adv. Sci. 2022, 9, e2201182. |
| [47] | Tian M. D.; Wang Z.; Yuan X.; Zhang H.; Liu Z. X.; Liu Y. Adv. Funct. Mater. 2023, 2300779. |
/
| 〈 |
|
〉 |