Review

Advances in Electrochemical Reductive Removal of Oxyanions in Water

  • Wei Hou ,
  • Yancai Yao ,
  • Lizhi Zhang
Expand
  • School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-13

  Online published: 2023-06-12

Supported by

National Natural Science Foundation of China(22102100); National Natural Science Foundation of China(21936003); Natural Science Foundation of Shanghai(22ZR1431700); National Key Research and Development Program of China(2021YFA1201701); National Key Research and Development Program of China(2018YFC1800801)

Abstract

The excessive discharge of oxyanions (i.e., nitrate, bromate, perchlorate) into water has caused more and more serious environmental pollution problems. Oxyanions are generally persistent, refractory, teratogenic and carcinogenic, posing a great threat to ecosystems and human health. Therefore, they have increasingly attracted widespread attention. Electrochemical reduction is regarded as one of the most promising water treatment technology, because it could employ either electrons or strong reductive species (atomic H*) generated by dissociating water molecules to realize the efficient, green and safe removal of toxic oxyanions. Herein, the electrochemical reduction mechanism for removing pollutants is briefly introduced, the advancements of electrochemical reduction of nitrate, bromate and perchlorate are summarized and their possible reaction pathways are discussed, the effect of catalysts (i.e., structure, types) on the performance of electrochemical reduction is further analyzed. Finally, the possible challenges of electrochemical reduction technology to remove oxyanions are deeply discussed and prospected.

Cite this article

Wei Hou , Yancai Yao , Lizhi Zhang . Advances in Electrochemical Reductive Removal of Oxyanions in Water[J]. Acta Chimica Sinica, 2023 , 81(8) : 979 -989 . DOI: 10.6023/A23040133

References

[1]
Howarth A. J.; Liu Y.; Hupp J. T.; Farha O. K. CrystEngComm 2015, 17, 7245.
[2]
Chaplin B. P.; Reinhard M.; Schneider W. F.; Schuth C.; Shapley J. R.; Strathmann T. J.; Werth C. J. Environ. Sci. Technol. 2012, 46, 3655.
[3]
Fan K.; Xie W.; Li J.; Sun Y.; Xu P.; Tang Y.; Li Z.; Shao M. Nat. Commun. 2022, 13, 7958.
[4]
Heck K. N.; Garcia-Segura S.; Westerhoff P.; Wong M. S. Acc. Chem. Res. 2019, 52, 906.
[5]
Xiao Q.; Yu S.; Li L.; Zhang Y.; Yi P. Water Res. 2019, 150, 310.
[6]
Yao F.; Zhong Y.; Yang Q.; Wang D.; Chen F.; Zhao J.; Xie T.; Jiang C.; An H.; Zeng G.; Li X. J. Hazard. Mater. 2017, 323, 602.
[7]
Shen J.; Yao F. B.; Chen S. J.; Yang L. Chin. J. Environ. Eng. 2022, 16, 12. (in Chinese)
[7]
( 申剑, 姚福兵, 陈圣杰, 杨麒, 环境工程学报, 2022, 16, 12.)
[8]
Chen X.; Huo X.; Liu J.; Wang Y.; Werth C. J.; Strathmann T. J. Chem. Eng. J. 2017, 313, 745.
[9]
Montes-Hernandez G.; Concha-Lozano N.; Renard F.; Quirico E. J. Hazard. Mater. 2009, 166, 788.
[10]
Yin Y. B.; Guo S.; Heck K. N.; Clark C. A.; Conrad C. L.; Wong M. S. ACS Sustainable Chem. Eng. 2018, 6, 11160.
[11]
Caswell T.; Dlamini M. W.; Miedziak P. J.; Pattisson S.; Davies P. R.; Taylor S. H.; Hutchings G. J. Catal. Sci. Technol. 2020, 10, 2082.
[12]
Yao F.; Yang Q.; Zhong Y.; Shu X.; Chen F.; Sun J.; Ma Y.; Fu Z.; Wang D.; Li X. Water Res. 2019, 157, 191.
[13]
Alsewaileh A. S.; Usman A. R.; Al-Wabel M. I. J. Environ. Manage. 2019, 237, 289.
[14]
Matos C. T.; Fortunato R.; Velizarov S.; Reis M. A.; Crespo J. G. Water Res. 2008, 42, 1785.
[15]
Sadyrbaeva T. Z. Chem. Eng. Process. 2016, 99, 183.
[16]
Vigla?ová E.; Galambo? M.; Danková Z.; Krivosudsky L.; Lengauer C. L.; Hood-Nowotny R.; Soja G.; Rompel A.; Matík M.; Brian?in J. Waste Manage. 2018, 79, 385.
[17]
Barrabés N.; Sá J. Appl. Catal., B 2011, 104, 1.
[18]
Liu G.; You S.; Zhang Y.; Huang H.; Spanjers H. J. Colloid Interface Sci. 2019, 553, 666.
[19]
Sheldon R. A. Angew. Chem., Int. Ed. 2020, 60, 538.
[20]
Lei C.; Liang F.; Li J.; Chen W.; Huang B. Chem. Eng. J. 2019, 358, 1054.
[21]
Xu B.; Chen Z.; Zhang G. Environ. Sci. Technol. 2022, 56, 614.
[22]
Fan Z.; Zhao H.; Wang K.; Ran W.; Sun J. F.; Liu J.; Liu R. Environ. Sci. Technol. 2023, 57, 1499.
[23]
Yao F.; Yang Q.; Sun J.; Chen F.; Zhong Y.; Yin H.; He L.; Tao Z.; Pi Z.; Wang D.; Li X. Chem. Eng. J. 2020, 389, 123588.
[24]
Zhang H. Environ. Sci. Pollut. Res. Int. 2019, 26, 10457.
[25]
Wu T.; Hu J.; Wan Y.; Qu X.; Zheng S. J. Hazard. Mater. 2022, 438, 129551.
[26]
Liu C.; Zhang G.; Li Y.; Qu J.; Liu H. Small 2018, 14, 1800421.
[27]
Li Y.; Ren L.; Wang T.; Wu Z.; Wang Z. J. Hazard. Mater. 2023, 446, 130688.
[28]
Guo Y.; Li Y.; Wang Z. Water Res. 2023, 234, 119810.
[29]
Canfield D. E.; Glazer A. N.; Falkowski P. G. Science 2010, 330, 192.
[30]
Zhu T.; Chen Q.; Liao P.; Duan W.; Liang S.; Yan Z.; Feng C. Small 2020, 16, 2004526.
[31]
Lim J.; Chen Y.; Cullen D. A.; Lee S. W.; Senftle T. P.; Hatzell M. C. ACS Catal. 2022, 13, 87.
[32]
Sun T.; Li Y. B.; Zhang R. S.; Mao R.; Wang K. F.; Liu X. B.; Guo C. H.; Zhao X. Chin. J. Environ. Eng. 2021, 41, 8. (in Chinese)
[32]
( 孙拓, 李一兵, 张汝山, 冒冉, 王开丰, 刘新兵, 郭聪慧, 赵旭, 环境科学学报, 2021, 41, 8.)
[33]
Wang Y.; Wang C.; Li M.; Yu Y.; Zhang B. Chem. Soc. Rev. 2021, 50, 6720.
[34]
Theerthagiri J.; Park J.; Das H. T.; Rahamathulla N.; Cardoso E. S. F.; Murthy A. P.; Maia G.; Vo D. V. N.; Choi M. Y. Environ. Chem. Lett. 2022, 20, 2929.
[35]
Yao Y.; Zhang L. Sci. Bull. 2022, 67, 1194.
[36]
Min B.; Gao Q.; Yan Z.; Han X.; Hosmer K.; Campbell A.; Zhu H. Ind. Eng. Chem. Res. 2021, 60, 14635.
[37]
Groot M.; Koper M. J. Electroanal. Chem. 2004, 562, 81.
[38]
Sicsic D.; Balbaud-Clrier F.; Tribollet B. Eur. J. Inorg. Chem. 2014, 17, 6174.
[39]
Xu H.; Ma Y.; Chen J.; Zhang W. X.; Yang J. Chem. Soc. Rev. 2022, 51, 2710.
[40]
Zeng Y.; Priest C.; Wang G.; Wu G. Small Methods 2020, 4, 2000672.
[41]
Zhang X.; Wang Y.; Liu C.; Yu Y.; Lu S.; Zhang B. Chem. Eng. J. 2021, 403, 126269.
[42]
Bae S. E.; Stewart K. L.; Gewirth A. A. J. Am. Chem. Soc. 2007, 129, 10171.
[43]
Meng S.; Ling Y.; Yang M.; Zhao X.; Osman A. I.; Al-Muhtaseb A. H.; Rooney D. W.; Yap P.-S. J. Environ. Chem. Eng. 2023, 11, 109418.
[44]
Garcia-Segura S.; Lanzarini-Lopes M.; Hristovski K.; Westerhoff P. Appl. Catal., B 2018, 236, 546.
[45]
Wang Z.; Young S. D.; Goldsmith B. R.; Singh N. J. Catal. 2021, 395, 143.
[46]
Katsounaros I.; Kyriacou G. Electrochim. Acta 2008, 53, 5477.
[47]
Vooys A.; Beltramo G. L.; Riet B. V.; Veen J.; Koper M. Electrochim. Acta 2004, 49, 1307.
[48]
Yoshioka T.; Iwase K.; Nakanishi S.; Hashimoto K.; Kamiya K. J. Phys. Chem. C 2016, 120, 15729.
[49]
Duca M.; Cucarella M. O.; Rodriguez P.; Koper M. J. Am. Chem. Soc. 2010, 132, 18042.
[50]
Li J.; Zhan G.; Yang J.; Quan F.; Mao C.; Liu Y.; Wang B.; Lei F.; Li L.; Chan A. W. M.; Xu L.; Shi Y.; Du Y.; Hao W.; Wong P. K.; Wang J.; Dou S. X.; Zhang L.; Yu J. C. J. Am. Chem. Soc. 2020, 142, 7036.
[51]
Li T.; Tang C.; Guo H.; Wu H.; Duan C.; Wang H.; Zhang F.; Cao Y.; Yang G.; Zhou Y. ACS Appl. Mater. Interfaces 2022, 14, 49765.
[52]
Perez-Gallent E.; Figueiredo M.; Katsounaros I.; Koper; M. T. Electrochim. Acta 2017, 227, 77.
[53]
Xu Y.-T.; Xie M.-Y.; Zhong H.; Cao Y. ACS Catal. 2022, 12, 8698.
[54]
Wang Y.; Li H.; Zhou W.; Zhang X.; Zhang B.; Yu Y. Angew. Chem., Int. Ed. 2022, 61, e202202604.
[55]
Aristizábal A.; Contreras S.; Barrabés N.; Llorca J.; Tichit D.; Medina F. Appl. Catal., B 2011, 110, 58.
[56]
Yao Y.; Zhao L.; Dai J.; Wang J.; Fang C.; Zhan G.; Zheng Q.; Hou W.; Zhang L. Angew. Chem., Int. Ed. 2022, 61, e202208215.
[57]
Yin H.; Peng Y.; Li J. Environ. Sci. Technol. 2023, 57, 3134.
[58]
Liu H.; Lang X.; Zhu C.; Timoshenko J.; Bai L.; Guijarro N.; Yin H.; Peng Y.; Li J.; Liu Z. Angew. Chem., Int. Ed. 2022, 61, e202202556.
[59]
Dima G. E.; Vooys A. D.; Koper M. J. Electroanal. Chem. 2003, 554, 15.
[60]
Guo H.; Li M.; Yang Y.; Luo R.; Liu W.; Zhang F.; Tang C.; Yang G.; Zhou Y. Small 2023, 19, 2207743.
[61]
Jr D. B.; Gewirth A. A. Nano Energy 2016, 29, 457.
[62]
Lim J.; Liu C.-Y.; Park J.; Liu Y.-H.; Senftle T. P.; Lee S. W.; Hatzell M. C. ACS Catal. 2021, 11, 7568.
[63]
Chen K.; Ma Z.; Li X.; Kang J.; Ma D.; Chu K. Adv. Funct. Mater. 2023, 33, 2209890.
[64]
Zhang Z.; Xu Y.; Shi W.; Wang W.; Zhang R.; Bao X.; Zhang B.; Li L.; Cui F. Chem. Eng. J. 2016, 290, 201.
[65]
Zhu J. Y.; Xue Q.; Xue Y. Y.; Ding Y.; Li F. M.; Jin P.; Chen P.; Chen Y. ACS Appl. Mater. Interfaces 2020, 12, 14064.
[66]
Fu X.; Zhao X.; Hu X.; He K.; Yu Y.; Li T.; Tu Q.; Qian X.; Yue Q.; Wasielewski M. R.; Kang Y. Appl. Mater. Today 2020, 19, 100620.
[67]
Xue Y.; Yu Q.; Ma Q.; Chen Y.; Zhang C.; Teng W.; Fan J.; Zhang W. X. Environ. Sci. Technol. 2022, 56, 14797.
[68]
Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y. T.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Nat. Commun. 2021, 12, 2870.
[69]
Li Y.; Ma J.; Wu Z. Environ. Sci. Technol. 2022, 56, 8673.
[70]
Deng X.; Yang Y.; Wang L.; Fu X.; Luo J. Adv. Sci. 2021, 8, 2004523.
[71]
Zheng W. X.; Zhu L. Y.; Yan Z.; Lin Z. C.; Lei Z. C.; Zhang Y. F.; Xu H. L.; Dang Z.; Wei C. H.; Feng C. H. Environ. Sci. Technol. 2021, 55, 13231.
[72]
Soltermann F.; Abegglen C.; Tschui M.; Stahel S.; Gunten U. V. Water Res. 2017, 116, 76.
[73]
Li A. Z.; Mao R.; Zhao X. Chin. Sci. China: Chem. 2014, 10, 7. (in Chinese)
[73]
( 李昂臻, 冒冉, 赵旭, 中国科学: 化学, 2014, 10, 7.)
[74]
Richardson S. D.; Plewa M. J.; Wagner E. D.; Schoeny R.; Demarini D. M. Mutat. Res.,Rev. Mutat. Res. 2007, 636, 178.
[75]
Lu Z.; Yang Q.; Hu T. Chem. Eng. J. 2022, 446, 137356.
[76]
Liang D.; Qin L.; Cui H.; Tang R.; Hui X.; Xie X.; Zhai J. Electrochim. Acta 2010, 55, 8471.
[77]
Zhao X.; Liu H.; Li A.; Shen Y.; Qu J. Electrochim. Acta 2012, 62, 181.
[78]
Townshend A. Anal. Chim. Acta 1987, 198, 333.
[79]
Mao R.; Yan L.; Zhao X.; Djellabi R.; Wang K.; Hu K.; Zhu H. Chem. Eng. J. 2022, 429, 132139.
[80]
Kishimoto N.; Matsuda N. Environ. Sci. Technol. 2009, 43, 2054.
[81]
Zhou D.; Ding L.; Cui H.; An H.; Zhai J.; Li Q. Chem. Eng. J. 2012, 200-202, 32.
[82]
Cuentas-Gallegos A. K.; Miranda-Hernández M.; Vargas-Ocampo A. Electrochim. Acta 2009, 54, 4378.
[83]
Mao R.; Zhao X.; Lan H.; Liu H.; Qu J. Appl. Catal., B 2014, 160-161, 179.
[84]
Yao F.; Yang Q.; Yan M.; Li X.; Li X. J. Hazard. Mater. 2019, 386, 121651.
[85]
Lan H.; Mao R.; Tong Y.; Liu Y.; Liu H.; An X.; Liu R. Environ. Sci. Technol. 2016, 50, 11872.
[86]
Conner W. C.; Falconer J. L. Chem. Rev. 1995, 95, 123.
[87]
Nutt M.; Hughes J.; Wong M. Environ. Sci. Technol. 2005, 39, 1346.
[88]
Figueras C. F. J. Mol. Catal. A: Chem. 2001, 173, 117.
[89]
Witonska I. A.; Walock M. J.; Dziugan P.; Karski S.; Stanishevsky A. V. Appl. Surf. Sci. 2013, 273, 330.
[90]
Zhou Y.; Zhang G.; Ji Q.; Zhang W.; Zhang J.; Liu H.; Qu J. Environ. Sci. Technol. 2019, 53, 11383.
[91]
Yao Q.; Zhou X.; Xiao S.; Chen J.; Zhang Y. Water Res. 2019, 165, 114930.
[92]
Gao J. N.; Jiang B.; Ni C. C.; Qi Y. F.; Zhang Y. Q.; Oturan N.; Oturan M. A. Appl. Catal., B 2019, 254, 391.
[93]
Cao F.; Jaunat J.; Sturchio N.; Cances B.; Morvan X.; Devos A.; Barbin V.; Ollivier P. Sci. Total Environ. 2019, 661, 737.
[94]
Li H.; Zhou L.; Lin H.; Zhang W.; Xia S. Sci. Total Environ. 2019, 694, 133564.
[95]
Fang Q. L.; Chen B. L. Chin. J. Environ. Eng. 2011, 31, 1569. (in Chinese)
[95]
( 方齐乐, 陈宝梁, 环境科学学报, 2011, 31, 1569.)
[96]
Ren C.; Yang P.; Sun J.; Bi E. Y.; Gao J.; Palmer J.; Zhu M.; Wu Y.; Liu J. J. Am. Chem. Soc. 2021, 143, 7891.
[97]
Scheytt T. J.; Freywald J.; Ptacek C. J. Grundwasser 2011, 16, 37.
[98]
Greer M. A.; Goodman G.; Pleus R. C.; Greer S. E. Environ. Health Perspect. 2005, 113, A 732.
[99]
Cartier T.; Baert A.; Cabillic P. J.; Casellas C.; Joyeux M. Environnement, Risques & Sante 2012, 11, 316.
[100]
Yang Q.; Yao F.; Zhong Y.; Wang D.; Chen F.; Sun J.; Hua S.; Li S.; Li X.; Zeng G. Chem. Eng. J. 2016, 306, 1081.
[101]
Wasberg M.; Horányi G. J. Electroanal. Chem. 1995, 381, 151.
[102]
Láng G. G.; Horányi G. J. Electroanal. Chem. 2003, 552, 197.
[103]
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
[104]
Mahmudov R.; Shu Y.; Rykov S.; Chen J.; Huang C. P. Appl. Catal., B 2008, 81, 78.
[105]
Rusanova M. Y.; PolasKova P.; Muzika M.; Fawcett W. R. Electrochim. Acta 2006, 51, 3097.
[106]
Wang D.; Huang C.; Chen J.; Lin H.; Shah S. Sep. Purif. Technol. 2007, 58, 129.
[107]
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
[108]
Hurley K. D.; Shapley J. R. Environ. Sci. Technol. 2007, 41, 2044.
[109]
Wang P.-Y.; Chen C.-L.; Huang C. P. J. Environ. Eng. 2019, 145, 04019046.
[110]
Xu B.; Zhai Y.; Chen W.; Wang B.; Wang T.; Zhang C.; Li C.; Zeng G. Chem. Eng. J. 2018, 348, 765.
[111]
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
[112]
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
[113]
Kim Y.-N.; Lee Y.-C.; Choi M. Carbon 2013, 65, 315.
[114]
Ge L.; Rabiee H.; Li M. Chem 2022, 8, 663.
[115]
Ma J.; Wei W.; Qin G.; Xiao T.; Tang W.; Zhao S.; Jiang L.; Liu S. Water Res. 2022, 208, 117862.
[116]
Misal S. N.; Lin M. H.; Mehraeen S.; Chaplin B. P. J. Hazard. Mater. 2022, 384, 121420.
[117]
Almassi S.; Ren C.; Liu J.; Chaplin B. P. Environ. Sci. Technol. 2022, 56, 3267.
[118]
Seibert D.; Zorzo C. F.; Borba F. H.; De Souza R. M.; Quesada H. B.; Bergamasco R.; Baptista A. T.; Inticher J. J. Sci. Total Environ. 2020, 748, 141527.
[119]
Zhang Y.; Guo L.; Tao L.; Lu Y.; Wang S. Small Methods 2018, 3, 1800406.
[120]
Hu X.; Hu G.; Li X.; Zhao X.; Zhou Y.; Hu J.; Zhang H. Appl. Surf. Sci. 2022, 584, 152556.
[121]
Meng N.; Huang Y.; Liu Y.; Yu Y.; Zhang B. Cell Rep. Phys. Sci. 2021, 2, 100378.
[122]
Qin J.; Liu N.; Chen L.; Wu K.; Zhao Q.; Liu B.; Ye Z. ACS Sustainable Chem. Eng. 2022, 10, 15869.
[123]
Pei S.; Shi H.; Zhang J.; Wang S.; Ren N.; You S. J. Hazard. Mater. 2021, 419, 126434.
Outlines

/