Communication

Brønsted Acid-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement of Ynamides

  • Tongyi Zhai ,
  • Chang Ge ,
  • Pengcheng Qian ,
  • Bo Zhou ,
  • Longwu Ye
Expand
  • a College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
    b College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035
    c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
Dedicated to the 90th anniversary of Acta Chimica Sinica.
*E-mail: ;
; Tel.: 0592-2185833

Received date: 2023-04-30

  Online published: 2023-06-13

Supported by

The National Natural Science Foundation of China(22125108); The National Natural Science Foundation of China(22121001); The President Research Funds from Xiamen University(20720210002); The National Found for Fostering Talents of Basic Science (NFFTBS(J1310024)

Abstract

A Brønsted acid-catalyzed intramolecular hydroalkoxylation/Claisen rearrangement of ynamides for the synthesis of eight-membered lactams is presented. Firstly, the keteniminium intermediate was generated from the activation of ynamide by Brønsted acid, which could interact with intramolecular hydroxy group through hydrogen bonding and ion pairing effects. Then, the tandem hydroalkoxylation/Claisen rearrangement took place and produced eight-membered lactams. Meanwhile, preliminary studies were conducted into the chiral Brønsted acid-catalyzed kinetic resolution, and several chiral eight-membered lactams were successfully synthesized. Other notable features of this metal-free method include the simple procedure, mild reaction conditions and good functional group compatibility. This research provides a practical method for the synthesis of biologically important eight-membered lactam skeletons. Accordingly, MsOH (5 mol%, 0.005 mmol, 0.32 μL) was added to the solution of ynamide (1 equiv., 0.1 mmol) in dry PhCl (4 mL) at room temperature. The reaction mixture was then stirred at 60 ℃ and the progress of the reaction was monitored by thin layer chromatography (TLC). Upon completion, the reaction was quenched with Et3N (0.005 mmol, 0.7 μL), concentrated and purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate, VV=5∶1), to afford the desired eight-membered lactam. Under this condition, a series of ynamides with different substituents worked smoothly to provide the corresponding eight-membered lactams efficiently. Furthermore, chiral Brønsted acid (10 mol%, 0.005 mmol, 3.5 mg) and H2O (0.05 mmol, 0.9 μL) were added to the solution of ynamide (1 equiv., 0.05 mmol) in PhCl (2 mL) at –20 ℃ and the progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with Et3N (0.005 mmol, 0.75 μL), concentrated and purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate, VV=5∶1), to afford the chiral eight-membered lactam and chiral substrate. Also, a plausible mechanism involving the hydrogen bonding and ion pairing effects is proposed based on experimental results.

Cite this article

Tongyi Zhai , Chang Ge , Pengcheng Qian , Bo Zhou , Longwu Ye . Brønsted Acid-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement of Ynamides[J]. Acta Chimica Sinica, 2023 , 81(9) : 1101 -1107 . DOI: 10.6023/A23040188

References

[1]
(a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
[1]
(b) Molander, G. A. Acc. Chem. Res. 1998, 31, 603.
[1]
(c) Yet, L. Chem. Rev. 2000, 100, 2963.
[1]
(d) Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125.
[1]
(e) Chang, J.; Reiner, J.; Xie, J. Chem. Rev. 2005, 105, 4581.
[1]
(f) Mazumdar, W.; Driver, T. G. Synthesis 2021, 53, 1734.
[1]
(g) Qin, X.-T.; Zou, N.; Nong, C.-M.; Mo, D.-L. Chin. J. Org. Chem. 2023, 43, 130. (in Chinese)
[1]
(覃小婷, 邹宁, 农彩梅, 莫冬亮, 有机化学, 2023, 43, 130.)
[2]
(a) Riemer, B.; Hofer, O.; Greger, H. Phytochemistry 1997, 45, 337.
[2]
(b) Berg, U.; Bladh, H.; Svensson, C.; Wallin, M. Bioorg. Med. Chem. Lett. 1997, 7, 2771.
[2]
(c) Baudoin, O.; Cesario, M.; Guénard, D.; Guéritte, F. J. Org. Chem. 2002, 67, 1199.
[2]
(d) Yang, L.; Deng, G.; Wang, D.-X.; Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org. Lett. 2007, 9, 1387.
[2]
(e) Putey, A.; Popowycz, F.; Do, Q.-T.; Bernard, P.; Talapatra, S. K.; Kozielski, F.; Galmarini, C. M.; Joseph, B. J. Med. Chem. 2009, 52, 5916.
[2]
(f) Boonya-udtayan, S.; Eno, M.; Ruchirawat, S.; Mahidol, C.; Thasana, N. Tetrahedron 2012, 68, 10293.
[3]
(a) Bier?ugel, H.; Jansen, T. P.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J. H. Org. Lett. 2002, 4, 2673.
[3]
(b) Creighton, C. J.; Leo, G. C.; Du, Y.-M.; Reitz, A. B. Bioorg. Med. Chem. 2004, 12, 4375.
[3]
(c) Kaul, R.; Surprenant, S.; Lubell, W. D. J. Org. Chem. 2005, 70, 3838.
[3]
(d) Sun, H.-Y.; Nikolovska-Coleska, Z.; Lu, J.-F.; Meagher, J. L.; Yang, C.-Y.; Qiu, S.; Tomita, Y.; Ueda, Y.; Jiang, S.; Krajewski, K.; Roller, P. P.; Stuckey, J. A.; Wang, S.-M. J. Am. Chem. Soc. 2007, 129, 15279.
[4]
(a) Yu, R. T.; Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13250.
[4]
(b) Shaw, M. H.; Croft, R. A.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 8054.
[5]
(a) Lu, S.-M.; Alper, H. J. Am. Chem. Soc. 2008, 130, 6451.
[5]
(b) Zhao, W.-X.; Wang, Z.-B.; Sun, J.-W. Angew. Chem., Int. Ed. 2012, 51, 6209.
[5]
(c) Zhao, W.-X.; Li, Z.-G.; Sun, J.-W. J. Am. Chem. Soc. 2013, 135, 4680.
[5]
(d) Iwai, T.; Okochi, H.; Ito, H.; Sawamura, M. Angew. Chem., Int. Ed. 2013, 52, 4239.
[5]
(e) Wu, S.-Z.; Zeng, R.; Fu, C.-L.; Yu, Y.-H.; Zhang, X.; Ma, S.-M. Chem. Sci. 2015, 6, 2275.
[5]
(f) Zhao, W.-X.; Qian, H.; Li, Z.-G.; Sun, J.-W. Angew. Chem., Int. Ed. 2015, 54, 10005.
[6]
(a) Huang, X.-L.; Klimczyk, S.; Maulide, N. Synthesis 2012, 44, 175.
[6]
(b) Adcock, H. V.; Davies, P. W. Synthesis 2012, 44, 3401.
[7]
(a) Xia, P.; Ma, D.-F.; Zheng, Y.-Q. Chin. J. Org. Chem. 1986, 6, 226. (in Chinese)
[7]
(夏鹏, 马东风, 郑筠青, 有机化学, 1986, 6, 226.)
[7]
(b) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863.
[7]
(c) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024.
[7]
(d) Bae, H. J.; Baskar, B.; An, S. E.; Cheong, J. Y.; Thangadurai, D. T.; Hwang, I.; Rhee, Y. H. Angew. Chem., Int. Ed. 2008, 47, 2263.
[7]
(e) Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O. Org. Lett. 2010, 12, 2594.
[7]
(f) Ting, C.-M.; Wang, C.-D.; Chaudhuri, R.; Liu, R.-S. Org. Lett. 2011, 13, 1702.
[7]
(g) Istrate, F. M.; Gagosz, F. Beilstein J. Org. Chem. 2011, 7, 878.
[7]
(h) Jaimes, M. C. B.; Weingand, V.; Rominger, F.; Hashmi, A. S. K. Chem.-Eur. J. 2013, 19, 12504.
[7]
(i) Ackermann, M.; Bucher, J.; Rappold, M.; Graf, K.; Rominger, F.; Hashmi, A. S. K. Chem.-Asian J. 2013, 8, 1786.
[7]
(j) Wu, H.-M.; Zi, W.-W.; Li, G.-G.; Lu, H.-J.; Toste, F. D. Angew. Chem., Int. Ed. 2015, 54, 8529.
[8]
(a) Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W. ACS Catal. 2019, 9, 6393.
[8]
(b) Luo, J.; Chen, G.-S.; Chen, S.-J.; Yu, J.-S.; Li, Z.-D.; Liu, Y.-L. ACS Catal. 2020, 10, 13978.
[8]
(c) Hong, F.-L.; Ye, L.-W. Acc. Chem. Res. 2020, 53, 2003.
[8]
(d) Chen, Y.-B.; Qian, P.-C.; Ye, L.-W. Chem. Soc. Rev. 2020, 49, 8897.
[8]
(e) Lynch, C. C.; Sripada, A.; Wolf, C. Chem. Soc. Rev. 2020, 49, 8543.
[8]
(f) Hu, Y.-C.; Zhao, Y.-Y.; Wan, B.-S.; Chen, Q.-A. Chem. Soc. Rev. 2021, 50, 2582.
[9]
(a) Shi, C.-Y.; Li, L.; Kang, W.; Zheng, Y.-X.; Ye, L.-W. Coord. Chem. Rev. 2021, 446, 214131.
[9]
(b) Yan, Y.-H.; Li, L.; Ye, L.-W. Synlett 2022, 33, 1813.
[10]
(a) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
[10]
(b) Zhou, B.; Li, L.; Liu, X.; Tan, T.-D.; Liu, J.-X.; Ye, L.-W. J. Org. Chem. 2017, 82, 10149.
[10]
(c) Zhou, B.; Zhang, Y.-Q.; Zhang, K.-R.; Yang, M.-Y.; Chen, Y.-B.; Li, Y.; Peng, Q.; Zhu, S.-F.; Zhou, Q.-L.; Ye, L.-W. Nat. Commun. 2019, 10, 3234.
[10]
(d) Li, L.; Zhu, X.-Q.; Zhang, Y.-Q.; Bu, H.-Z.; Yuan, P.; Chen, J.-Y.; Su, J.-Y.; Deng, X.-M.; Ye, L.-W. Chem. Sci. 2019, 10, 3123.
[10]
(e) Zhang, Y.-Q.; Zhu, X.-Q.; Xu, Y.; Bu, H.-Z.; Wang, J.-L.; Zhai, T.-Y.; Zhou, J.-M.; Ye, L.-W. Green Chem. 2019, 21, 3023.
[10]
(f) Chen, P.-F.; Zhou, B.; Wu, P.; Wang, B.-J.; Ye, L.-W. Angew. Chem., Int. Ed. 2021, 60, 27164.
[10]
(g) Zhu, G.-Y.; Zhou, J.-J.; Liu, L.-G.; Li, X.; Zhu, X.-Q.; Lu, X.; Zhou, J.-M.; Ye, L.-W. Angew. Chem., Int. Ed. 2022, 61, e202204603.
[11]
(a) Zhang, Y.-Q.; Chen, Y.-B.; Liu, J.-R.; Wu, S.-Q; Fan, X.-Y.; Zhang, Z.-X.; Hong, X.; Ye, L.-W. Nat. Chem. 2021, 13, 1093.
[11]
(b) Zhang, Y.-Q.; Zhang, Y.-P.; Zheng, Y.-X.; Li, Z.-Y.; Ye, L.-W. Cell Rep. Phy. Sci. 2021, 2, 100448.
[11]
(c) Zhu, B.-H.; Zheng, Y.-X.; Kang, W.; Deng, C.; Zhou, J.-M.; Ye, L.-W. Sci. China: Chem. 2021, 64, 1985.
[11]
(d) Weng, C.-Y.; Zhu, G.-Y.; Zhu, B.-H.; Qian, P.-C.; Zhu, X.-Q.; Zhou, J.-M.; Ye, L.-W. Org. Chem. Front. 2022, 9, 2773.
[11]
(e) Li, H.-H.; Zhang, Y.-P.; Zhai, T.-Y.; Liu, B.-Y.; Shi, C.-Y.; Zhou, J.-M.; Ye, L.-W. Org. Chem. Front. 2022, 9, 3709.
[11]
(f) Zhang, Z.-X.; Zhai, T.-Y.; Zhu, B.-H.; Qian, P.-C.; Ye, L.-W. Chin. J. Org. Chem. 2022, 42, 1501. (in Chinese)
[11]
张智鑫, 翟彤仪, 朱伯汉, 钱鹏程, 叶龙武, 有机化学, 2022, 42, 1501).
[11]
(g) Zhang, Z.-X.; Wang, X.; Jiang, J.-T.; Chen, J.; Zhu, X.-Q. Chin. Chem. Lett. 2023, 34, 107647.
Outlines

/