Perspective

Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols

  • Zhanglong Yu ,
  • Zhongliang Li ,
  • Changjiang Yang ,
  • Qiangshuai Gu ,
  • Xinyuan Liu
Expand
  • a Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055
    b Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055
    c Department of Chemistry, School of Sciences, Great Bay University, Dongguan 523000
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-23

  Online published: 2023-06-13

Supported by

National Natural Science Foundation of China(22025103); National Natural Science Foundation of China(92256301); National Natural Science Foundation of China(21831002); National Natural Science Foundation of China(22101122); National Natural Science Foundation of China(22001109); National Natural Science Foundation of China(22271133); National Natural Science Foundation of China(22201127); National Key R&D Program of China(2021YFF0701604); National Key R&D Program of China(2021YFF0701704); Shenzhen Science and Technology Program(KQTD20210811090112004); Shenzhen Science and Technology Program(JCYJ20220530115409020)

Abstract

Enantioselective desymmetrization of diols is an important method for the synthesis of complex enantioenriched alcohols, which has broad application prospects in medicinal chemistry, total synthesis, and materials science. In recent years, the use of copper catalysis to achieve diols’ enantioselective desymmetrization has progressed rapidly because copper is inexpensive and readily available compared with other noble metal catalysts. Besides, copper undergoes a two-electron or single-electron transfer process in the catalytic cycle, and the rich oxidation states of copper provides the opportunity to solve some challenging problems. This review summarizes the research progress in this field according to the types of diols (meso diol and prochiral diol) and reactions together with a brief perspective.

Cite this article

Zhanglong Yu , Zhongliang Li , Changjiang Yang , Qiangshuai Gu , Xinyuan Liu . Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols[J]. Acta Chimica Sinica, 2023 , 81(8) : 955 -966 . DOI: 10.6023/A23040161

References

[1]
(a) Borissov A.; Davies T. Q.; Ellis S. R.; Fleming T. A.; Richardson M. S.; Dixon D. J. Chem. Soc. Rev. 2016, 45, 5474.
[1]
(b) Petersen K. S. Tetrahedron Lett. 2015, 56, 6523.
[1]
(c) Nájera C.; Foubelo F.; Sansano J. M.; Yus M. Tetrahedron 2022, 106-107, 132629.
[1]
(d) Xu Y.; Zhai T.-Y.; Xu Z.; Ye L.-W. Trends in Chemistry 2022, 4, 191.
[1]
(e) Teng M.-Y.; Han T.; Huang E.-H.; Ye L.-W. Chin. J. Org. Chem. 2022, 42, 3295. (in Chinese)
[1]
( 滕明瑜, 韩涛, 黄恩和, 叶龙武, 有机化学, 2022, 42, 3295.)
[1]
(f) Yang B.; Yang J.; Zhang J. Chin. J. Chem. 2022, 40, 317.
[1]
(g) Deng Z.; Ouyang Y.; Ao Y.; Cai Q. Acta Chim. Sinica 2021, 79, 649. (in Chinese)
[1]
( 邓卓基, 欧阳溢凡, 敖运林, 蔡倩, 化学学报, 2021, 79, 649.)
[1]
(h) Zhao W.; Liu J.; He X.; Jiang H.; Lu L.; Xiao W. Chin. J. Org. Chem. 2022, 42, 2504. (in Chinese)
[1]
( 赵薇, 刘京, 何向奎, 蒋豪, 陆良秋, 肖文精, 有机化学, 2022, 42, 2504.)
[1]
(i) Yuan H.; Wang J. Chin. J. Org. Chem. 2022, 42, 302. (in Chinese)
[1]
( 袁海瑞, 王剑波, 有机化学, 2022, 42, 302.)
[2]
Zeng X.-P.; Cao Z.-Y.; Wang Y.-H.; Zhou F.; Zhou J. Chem. Rev. 2016, 116, 7330.
[3]
García-Urdiales E.; Alfonso I.; Gotor V. Chem. Rev. 2011, 111, PR110.
[4]
(a) Muller C. E.; Schreiner P. R. Angew. Chem., Int. Ed. 2011, 50, 6012.
[4]
(b) Enriquez-Garcia A.; Kundig E. P. Chem. Soc. Rev. 2012, 41, 7803.
[4]
(c) Díaz-de-Villegas M. D.; Gálvez J. A.; Badorrey R.; López-Ram-de-Viu M. P. Chem. Eur. J. 2012, 18, 13920.
[4]
(d) Suzuki T. Tetrahedron Lett. 2017, 58, 4731.
[5]
(a) Trost B. M.; Mino T. J. Am. Chem. Soc. 2003, 125, 2410.
[5]
(b) Honjo T.; Nakao M.; Sano S.; Shiro M.; Yamaguchi K.; Sei Y.; Nagao Y. Org. Lett. 2007, 9, 509.
[5]
(c) Trost B. M.; Malhotra S.; Mino T.; Rajapaksa N. S. Chem. Eur. J. 2008, 14, 7648.
[6]
(a) Cao K.-S.; Zheng W.-H. Tetrahedron: Asymmetry 2015, 26, 1150.
[6]
(b) Yang W.; Yan J.; Long Y.; Zhang S.; Liu J.; Zeng Y.; Cai Q. Org. Lett. 2013, 15, 6022.
[6]
(c) Shi J.; Wang T.; Huang Y.; Zhang X.; Wu Y.-D.; Cai Q. Org. Lett. 2015, 17, 840.
[7]
Zhou Q.-Q.; Lu F.-D.; Liu D.; Lu L.-Q.; Xiao W.-J. Org. Chem. Front. 2018, 5, 3098.
[8]
(a) Zi W.; Toste F. D. Angew. Chem., Int. Ed. 2015, 54, 14447.
[8]
(b) Zheng Y.; Guo L.; Zi W. Org. Lett. 2018, 20, 7039.
[9]
Ouellette E. T.; Lougee M. G.; Bucknam A. R.; Endres P. J.; Kim J. Y.; Lynch E. J.; Sisko E. J.; Sculimbrene B. R. J. Org. Chem. 2021, 86, 7450.
[10]
Solomon E. I.; Heppner D. E.; Johnston E. M.; Ginsbach J. W.; Cirera J.; Qayyum M.; Kieber-Emmons M. T.; Kjaergaard C. H.; Hadt R. G.; Tian L. Chem. Rev. 2014, 114, 3659.
[11]
Matsumura Y.; Maki T.; Murakami S.; Onomura O. J. Am. Chem. Soc. 2003, 125, 2052.
[12]
Mazet C.; Kohler V.; Pfaltz A. Angew. Chem., Int. Ed. 2005, 44, 4888.
[13]
Nakamura D.; Kakiuchi K.; Koga K.; Shirai R. Org. Lett. 2006, 8, 6139.
[14]
Arai T.; Mizukami T.; Yanagisawa A. Org. Lett. 2007, 9, 1145.
[15]
Ka?u?a Z.; Bielawski K.; ?wiek R.; Niedziejko P.; Kaliski P. Tetrahedron: Asymmetry 2013, 24, 1435.
[16]
Canipa S. J.; Stute A.; O'Brien P. Tetrahedron 2014, 70, 7395.
[17]
Matsumoto K.; Mitsuda M.; Ushijima N.; Demizu Y.; Onomura O.; Matsumura Y. Tetrahedron Lett. 2006, 47, 8453.
[18]
Hashimoto Y.; Michimuko C.; Yamaguchi K.; Nakajima M.; Sugiura M. J. Org. Chem. 2019, 84, 9313.
[19]
Demizu Y.; Matsumoto K.; Onomura O.; Matsumura Y. Tetrahedron Lett. 2007, 48, 7605.
[20]
Onomura O.; Arimoto H.; Matsumura Y.; Demizu Y. Tetrahedron Lett. 2007, 48, 8668.
[21]
Hamaguchi N.; Kuriyama M.; Onomura O. Tetrahedron: Asymmetry 2016, 27, 177.
[22]
Li R. Z.; Tang H.; Yang K. R.; Wan L. Q.; Zhang X.; Liu J.; Fu Z.; Niu D. Angew. Chem., Int. Ed. 2017, 56, 7213.
[23]
Mitsuda M.; Tanaka T.; Tanaka T.; Demizu Y.; Onomura O.; Matsumura Y. Tetrahedron Lett. 2006, 47, 8073.
[24]
Onomura O.; Demizu Y.; Kubo Y.; Matsumura Y. Synlett 2008, 2008, 433.
[25]
Jung B.; Hong M. S.; Kang S. H. Angew. Chem., Int. Ed. 2007, 46, 2616.
[26]
Jung B.; Kang S. H. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1471.
[27]
Hong M. S.; Kim T. W.; Jung B.; Kang S. H. Chem. Eur. J. 2008, 14, 3290.
[28]
Lee J. Y.; You Y. S.; Kang S. H. J. Am. Chem. Soc. 2011, 133, 1772.
[29]
You Y. S.; Kim T. W.; Kang S. H. Chem. Commun. 2013, 49, 9669.
[30]
Shimizu M.; Mushika M.; Mizota I.; Zhu Y. RSC Adv. 2019, 9, 23400.
[31]
Kuriyama M.; Tanigawa S.; Kubo Y.; Demizu Y.; Onomura O. Tetrahedron: Asymmetry 2010, 21, 1370.
[32]
Tsuda Y.; Kuriyama M.; Onomura O. Chem. Eur. J. 2012, 18, 2481.
[33]
Yamamoto K.; Tsuda Y.; Kuriyama M.; Demizu Y.; Onomura O. Chem. - Asian J. 2020, 15, 840.
[34]
Yamamoto K.; Ishimaru S.; Oyama T.; Tanigawa S.; Kuriyama M.; Onomura O. Org. Process Res. Dev. 2019, 23, 660.
[35]
Yamamoto K.; Suganomata Y.; Inoue T.; Kuriyama M.; Demizu Y.; Onomura O. J. Org. Chem. 2022, 87, 6479.
[36]
Yang W.; Liu Y.; Zhang S.; Cai Q. Angew. Chem., Int. Ed. 2015, 54, 8805.
[37]
Zhang Y.; Wang Q.; Wang T.; He H.; Yang W.; Zhang X.; Cai Q. J. Org. Chem. 2017, 82, 1458.
[38]
Wang Q.; Ye F.; Cao J.; Xu Z.; Zheng Z.-J.; Xu L.-W. Catal. Commun. 2020, 138, 105950.
[39]
Gao J.; Mai P.-L.; Ge Y.; Yuan W.; Li Y.; He C. ACS Catal. 2022, 12, 8476.
[40]
Cheng Y.-F.; Liu J.-R.; Gu Q.-S.; Yu Z.-L.; Wang J.; Li Z.-L.; Bian J.-Q.; Wen H.-T.; Wang X.-J.; Hong X.; Liu X.-Y. Nat. Catal. 2020, 3, 401.
[41]
Cheng Y.-F.; Yu Z.-L.; Tian Y.; Liu J.-R.; Wen H.-T.; Jiang N.-C.; Bian J.-Q.; Xu G.-X.; Xu D.-T.; Li Z.-L.; Gu Q.-S.; Hong X.; Liu X.-Y. Nat. Chem. 2023, 15, 395.
[42]
Yu Z.-L.; Cheng Y.-F.; Liu J.-R.; Yang W.; Xu D.-T.; Tian Y.; Bian J.-Q.; Li Z.-L.; Fan L.-W.; Luan C.; Gao A.; Gu Q.-S.; Liu X.-Y. J. Am. Chem. Soc. 2023, 145, 6535.
Outlines

/