Antifreeze Mechanism of Antifreeze Agents by Near Infrared Spectroscopy and Molecular Simulations★
Received date: 2023-04-29
Online published: 2023-06-15
Supported by
The National Natural Science Foundation of China(22174075); The National Natural Science Foundation of China(22073050); The Haihe Laboratory of Sustainable Chemical Transformations
Cryopreservation is an essential technology for long-term storage of organs, tissues, cells and other biological samples. During cryopreservation, antifreeze agents are commonly used to reduce the freezing point of the system and inhibit the formation of ice crystals (ice nucleation, ice growth, and ice crystal recrystallization), thereby avoiding damage to biological samples caused by uncontrolled ice formation at low temperature. However, due to the difficulty in obtaining microscopic details of the interaction between antifreeze agents and water/ice in experiment, the mechanism of antifreeze has not yet been clearly understood. The hydrogen-bonded structure of water is very sensitive to temperature changes. By combining temperature-dependent near-infrared spectroscopy (NIRS) and chemometric methods, the hydrogen-bonded structure of water in low-temperature environments and the interactions between antifreeze agents and water/ice crystals are studied. The antifreeze mechanisms are understood at the molecular level using spectral information of water that changes with temperature. The details of the interaction between antifreeze agents and water/ice crystals at the atomic level are investigated using molecular dynamics (MD) simulation, and the antifreeze mechanisms are revealed by combining spectroscopic experimental methods. This Account provides an overview of the research progress on the antifreeze mechanism of antifreeze agents, with a focus on the recent advances in the study of the interaction between antifreeze agents and water/ice crystals using temperature-dependent NIRS and MD simulations. Overall, the Account aims to provide new ideas for the study of antifreeze mechanisms and deepen our understanding of the molecular details of the antifreeze mechanism. Finally, the challenges and prospects of using NIRS to reveal the antifreeze mechanism of antifreeze agents are discussed and possible further improvements are proposed, such as developing more effective chemometric methods to extract the spectral information of water molecules with different hydrogen-bonded structures from the NIRS of water, introducing importance sampling technique specially designed for water icing into MD simulations to enhance the sampling efficiency, so that MD simulations can be used to explore the entire process of water freezing inhibition by antifreeze agents, deepening the understanding of the antifreeze mechanism.
Haipeng Wang , Wensheng Cai , Xueguang Shao . Antifreeze Mechanism of Antifreeze Agents by Near Infrared Spectroscopy and Molecular Simulations★[J]. Acta Chimica Sinica, 2023 , 81(9) : 1167 -1174 . DOI: 10.6023/A23040185
[1] | Nagashima, H.; Kashiwazaki, N.; Ashman, R. J.; Grupen, C. G.; Nottle, M. B. Nature 1995, 374, 416. |
[2] | Ma, Y.; Gao, L.; Tian, Y.; Chen, P.; Yang, J.; Zhang, L. Acta Biomater. 2021, 131, 97. |
[3] | Chang, T.; Zhao, G. Adv. Sci. 2021, 8, 2002425. |
[4] | Lin, M.; Cao, H.; Li, J. Acta Biomater. 2023, 155, 35. |
[5] | Liu, Z.; Zheng, X.; Wang, J. J. Am. Chem. Soc. 2022, 144, 5685. |
[6] | He, Z.; Liu, K.; Wang, J. Acc. Chem. Res. 2018, 51, 1082. |
[7] | Hu, W.; Chen, C.; Sun, J.; Zhang, N.; Zhao, J.; Liu, Y.; Ling, Z.; Li, W.; Liu, W.; Song, Y. Commun. Chem. 2022, 5, 33. |
[8] | Chen, Z.; Liu, W.; Sun, J.; Chen, C.; Song, Y. J. Mol. Liq. 2023, 370, 121008. |
[9] | Chen, Z.; Sun, J.; Wu, P.; Liu, W.; Chen, C.; Lang, C.; Dai, S.; Zhou, W. Fuel 2023, 33, 127041. |
[10] | DeVries, A. L.; Wohlschlag, D. E. Science 1969, 163, 1073. |
[11] | Marshall, C. B.; Fletcher, G. L.; Davies, P. L. Nature 2004, 429, 153. |
[12] | Bar Dolev, M.; Braslavsky, I.; Davies, P. L. Annu. Rev. Biochem. 2016, 85, 515. |
[13] | Raymond, J. A.; DeVries, A. L. Proc. Natl. Acad. Sci. 1977, 74, 2589. |
[14] | Zhang, W.; Shao, X.; Cai, W. Prog. Chem. 2021, 33, 1797. (in Chinese) |
[14] | (张维佳, 邵学广, 蔡文生, 化学进展, 2021, 33, 1797.) |
[15] | DeVries, A. Annu. Rev. Physiol. 1983, 45, 245. |
[16] | Jia, Z.; Davies, P. L. Trends in Biochem. Sci. 2002, 27, 101. |
[17] | Yang, D.; Sax, M.; Chakrabartty, A.; Hew, C. Nature 1988, 333, 232. |
[18] | Knight, C. A.; Driggers, E.; DeVries, A. L. Biophys. J. 1993, 64, 252. |
[19] | Zhang, W.; Laursen, R. A. J. Biol. Chem. 1998, 273, 34806. |
[20] | Knight, C. A. Nature 2000, 406, 249. |
[21] | Garnham, C. P.; Campbell, R. L.; Davies, P. L. Proc. Natl. Acad. Sci. 2011, 108, 7363. |
[22] | Nutt, D. R.; Smith, J. C. J. Am. Chem. Soc. 2008, 130, 13066. |
[23] | Shao, X.; Kang, J.; Cai, W. Talanta 2010, 82, 1017. |
[24] | Wojtków, D.; Czarnecki, M. A. J. Phys. Chem. A 2006, 110, 10552. |
[25] | Chu, X.; Chen, P.; Li, J.; Liu, D.; Xu, Y. J. Instrum. Anal. 2020, 39, 1181. (in Chinese) |
[25] | (褚小立, 陈瀑, 李敬岩, 刘丹, 许育鹏, 分析测试学报, 2020, 39, 1181.) |
[26] | Tsenkova, R. J. Near Infrared Spec. 2009, 17, 303. |
[27] | Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. J. Near Infrared Spec. 1995, 3, 191. |
[28] | Gowen, A. A.; Amigo, J. M.; Tsenkova, R. Anal. Chim. Acta 2013, 759, 8. |
[29] | Li, D.; Li, L.; Quan, S.; Dong, Q.; Liu, R.; Sun, Z.; Zang, H. J. Mol. Struct. 2019, 1182, 197. |
[30] | Kang, J.; Cai, W.; Shao, X. Talanta 2011, 85, 420. |
[31] | Shan, R.; Zhao, Y.; Fan, M.; Liu, X.; Cai, W.; Shao, X. Talanta 2015, 131, 170. |
[32] | Wang, M.; Cui, X.; Cai, W.; Shao, X. Acta Chim. Sinica 2020, 78, 125. (in Chinese) |
[32] | (汪明圆, 崔晓宇, 蔡文生, 邵学广, 化学学报, 2020, 78, 125.) |
[33] | Han, L.; Cui, X.; Cai, W.; Shao, X. Talanta 2020, 217, 121036. |
[34] | Cui, X.; Liu, X.; Yu, X.; Cai, W.; Shao, X. Anal. Chim. Acta 2017, 957, 47. |
[35] | Wang, M.; Sun, Y.; Duan, C.; Cai, W.; Shao, X. J. Near Infrared Spec. 2022, 30, 154. |
[36] | Ma, B.; Cai, W.; Shao, X. Appl. Spectrosc. 2022, 76, 773. |
[37] | Oh, K. I.; Rajesh, K.; Stanton, J. F.; Baiz, C. R. Angew. Chem. Int. Edt. 2017, 56, 11375. |
[38] | Zhang, N.; Li, W.; Chen, C.; Zuo, J. Comput. Theor. Chem. 2013, 1017, 126. |
[39] | Meister, K.; Strazdaite, S.; DeVries, A. L.; Lotze, S.; Olijve, L. L.; Voets, I. K.; Bakker, H. J. Proc. Natl. Acad. Sci. 2014, 111, 17732. |
[40] | Ebbinghaus, S.; Meister, K.; Prigozhin, M. B.; DeVries, A. L.; Havenith, M.; Dzubiella, J.; Gruebele, M. Biophys. J. 2012, 103, L20. |
[41] | Meister, K.; Ebbinghaus, S.; Xu, Y.; Duman, J. G.; DeVries, A.; Gruebele, M.; Leitner, D. M.; Havenith, M. Proc. Natl. Acad. Sci. 2013, 110, 1617. |
[42] | Zhao, H.; Sun, Y.; Guo, Y.; Cai, W.; Shao, X. Chem. J. Chin. Univ. 2020, 41, 1968. (in Chinese) |
[42] | (赵洪涛, 孙岩, 郭一畅, 蔡文生, 邵学广, 高等学校化学学报, 2020, 41, 1968.) |
[43] | Han, L.; Wang, H.; Cai, W.; Shao, X. J. Phys. Chem. Lett. 2023, 14, 4127. |
[44] | Cui, S.; Zhang, W.; Shao, X.; Cai, W. J. Chem. Inf. Model. 2022, 62, 5165. |
[45] | Cui, S.; Zhang, W.; Shao, X.; Cai, W. Phys. Chem. Chem. Phys. 2022, 24, 7901. |
[46] | Zhang, W.; Liu, H.; Fu, H.; Shao, X.; Cai, W. J. Phys. Chem. B 2022, 126, 10637. |
[47] | Cui, S.; Zhang, W.; Shao, X.; Cai, W. Chem. J. Chin. Univ. 2022, 43, 97. (in Chinese) |
[47] | (崔韶丽, 张维佳, 邵学广, 蔡文生, 高等学校化学学报, 2022, 43, 97.) |
[48] | Schichman, S. A.; Amey, R. L. J. Phys. Chem. 1971, 75, 98. |
[49] | Catalán, J.; Díaz, C.; García-Blanco, F. J. Org. Chem. 2001, 66, 5846. |
[50] | Banerjee, S.; Roy, S.; Bagchi, B. J. Phys. Chem. B 2010, 114, 12875. |
[51] | Han, L.; Sun, Y.; Wang, S.; Su, T.; Cai, W.; Shao, X. J. Raman Spectrosc. 2022, 53, 1686. |
[52] | Su, T.; Sun, Y.; Han, L.; Cai, W.; Shao, X. Spectrochim. Acta A 2022, 266, 120417. |
[53] | Graham, B.; Bailey, T. L.; Healey, J. R. J.; Marcellini, M.; Deville, S.; Gibson, M. I. Angew. Chem. Int. Ed. 2017, 56, 15941. |
[54] | Qin, Q.; Zhao, L.; Liu, Z.; Liu, T.; Qu, J.; Zhang, X.; Li, R.; Yan, L.; Yan, J.; Jin, S.; Wang, J.; Qiao, J. ACS Appl. Mater. Interfaces 2020, 12, 18352. |
[55] | Fu, H.; Shao, X.; Cai, W.; Chipot, C. Acc. Chem. Res. 2019, 52, 3254. |
[56] | Fu, H.; Zhang, H.; Chen, H.; Shao, X.; Chipot, C.; Cai, W. J. Phys. Chem. Lett. 2018, 9, 4738. |
[57] | Zong, Z.; Li, Q.; Hong, Z.; Fu, H.; Cai, W.; Chipot, C.; Jiang, H.; Zhang, D.; Chen, S.; Shao, X. J. Am. Chem. Soc. 2019, 141, 14451. |
[58] | Zong, Z.; Mazurkewich, S.; Pereira, C. S.; Fu, H.; Cai, W.; Shao, X.; Skaf, M. S.; Larsbrink, J.; Lo Leggio, L. Nat. Commun. 2022, 13, 1449. |
[59] | Nada, H.; Furukawa, Y. Polym. J. 2012, 44, 690. |
[60] | Chakraborty, S.; Jana, B. Phys. Chem. Chem. Phys. 2017, 19, 11678. |
[61] | Chakraborty, S.; Jana, B. Langmuir 2017, 33, 7202. |
[62] | Grabowska, J.; Kuffel, A.; Zielkiewicz, J. J. Chem. Phys. 2016, 145, 075101. |
[63] | Duboué-Dijon, E.; Laage, D. J. Chem. Phys. 2014, 141, 22D529. |
[64] | Hudait, A.; Moberg, D. R.; Qiu, Y.; Odendahl, N.; Paesani, F.; Molinero, V. Proc. Natl. Acad. Sci. 2018, 115, 8266. |
[65] | Marks, S. M.; Patel, A. J. Proc. Natl. Acad. Sci. 2018, 115, 8244. |
[66] | Modig, K.; Qvist, J.; Marshall, C. B.; Davies, P. L.; Halle, B. Phys. Chem. Chem. Phys. 2010, 12, 10189. |
[67] | Mochizuki, K.; Molinero, V. J. Am. Chem. Soc. 2018, 140, 4803. |
[68] | Meister, K.; DeVries, A. L.; Bakker, H. J.; Drori, R. J. Am. Chem. Soc. 2018, 140, 9365. |
[69] | Groot, C. C. M.; Meister, K.; DeVries, A. L.; Bakker, H. J. J. Phys. Chem. Lett. 2016, 7, 4836. |
/
〈 |
|
〉 |