Review

Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination

  • Di Yang ,
  • Xiaofan Shi ,
  • Jijie Zhang ,
  • Xian-He Bu
Expand
  • a Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350
    b Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072
    c State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-20

  Online published: 2023-06-25

Supported by

National Natural Science Foundation of China(21908113); Tianjin Applied Basic Research Project(21JCYBJC00140)

Abstract

Solar water evaporation system has appealing advantages of low cost and high energy efficiency, which is of great significance to alleviate energy crisis, reduce water pollution and promote seawater desalination. However, the natural mechanism of solar-driven water evaporation system is often affected via low evaporation rate and small absorption spectrum range. The interface evaporation strategy that locally heats and limits heat loss is widely recognized as a high-performance and sustainable approach for efficient solar steam generation. With the continuous development of solar evaporation technology, the preparation of green and efficient photothermal materials has become a research hotspot. In this review, the photothermal materials were classified into metal materials, semiconductor materials, carbon-based materials and polymer materials according to their types. It elaborated on the photothermal conversion mechanisms of different materials and summarized the research status and progress of photothermal materials in the field of seawater desalination in recent years. The potential candidate photothermal materials were discussed and their future development was forecasted. This review aims to propose practical strategies for the rational design and development of efficient photothermal materials in the field of seawater desalination. The findings summarized in this review are of great significance for the future development of photothermal materials and provide valuable guidance for future research in this area.

Cite this article

Di Yang , Xiaofan Shi , Jijie Zhang , Xian-He Bu . Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination[J]. Acta Chimica Sinica, 2023 , 81(8) : 1052 -1063 . DOI: 10.6023/A23040148

References

[1]
Traver E.; Karaballi R. A.; Monfared Y. E.; Daurie H.; Gagnon G. A.; Dasog M. J. ACS Appl. Nano. Mater. 2020, 3, 2787.
[2]
Jiang C.; Feng X.; Wang B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
[2]
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[3]
Drioli E.; Ali A.; Macedonio F. J. Desalination 2015, 356, 56.
[4]
Childress A. E.; Elimelech M. J. Membrane Sci. 1996, 119, 253.
[5]
Ortiz J. M.; Sotoca J. A.; Expósito E.; Gallud F.; García-García V.; Montiel V.; Aldaz A. J. Membrane Sci. 2005, 252, 65.
[6]
Qu K. Y.; Han Q. X. Construction & Design for Engineering 2020, 02, 140. (in Chinese)
[6]
( 曲科宇, 韩庆祥, 工程建设与设计, 2020, 02, 140.)
[7]
Chaplin B. P. Environ. Sci.: Processes Impacts 2014, 16, 1182.
[8]
Xu J.; Xu F.; Qian M.; Li Z.; Sun P.; Hong Z.; Huang F. Nano Energy 2018, 53, 425.
[9]
Liu X.; Tian Y.; Chen F.; Caratenuto A.; DeGiorgis J. A.; ELSonbaty M.; Wan Y.; Ahlgren R.; Zheng Y. Adv. Funct. Mater. 2021, 31, 2100911.
[10]
Neumann O.; Feronti C.; Neumann A. D.; Dong A.; Schell K.; Lu B.; Kim E.; Quinn M.; Thompson S.; Grady N. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 11677.
[11]
Liu S.; Li S.; Lin M. ACS Energy Lett. 2023, 8, 1680.
[12]
(a) Ghasemi H.; Ni G.; Marconnet A. M.; Loomis J.; Yerci S.; Miljkovic N.; Chen G. Nat. Commun. 2014, 5, 4449.
[12]
(b) Kashyap V.; Ghasemi H. J. Mater. Chem. A 2020, 8, 7035.
[13]
Miao E.-D.; Ye M.-Q.; Guo C.-L.; Liang L.; Liu Q.; Rao Z.-H. Appl. Therm. Eng. 2019, 149, 1255.
[14]
(a) Yao J.; Yang G. J. J. Mater. Chem. A 2018, 6, 3869.
[14]
(b) Zhu G., Wang L.; Zhang Y.; Yu W.; Xie H. Appl. Phys. A-Mater. 2019, 125, 151.
[15]
(a) Liu H.; Chen C.; Chen G.; Kuang Y.; Zhao X., Song J.; Jia C.; Xu X.; Hitz E.; Xie H. Adv. Energy Mater. 2018, 8, 1701616.
[15]
(b) Zhu L.; Gao M.; Peh C. K. N.; Wang X.; Ho G. W. Adv. Energy Mater. 2018, 8, 1702149.
[16]
Mu P.; Zhang Z.; Bai W.; He J.; Sun H.; Zhu Z.; Liang W.; Li A. Adv. Energy Mater. 2019, 9, 1802158.
[17]
Wang Y.; Wu X.; Yang. X.; Owens G.; Xu H. Nano Energy 2020, 78, 105269.
[18]
Zhao W.; Gong H.; Song Y.; Li B.; Xu N.; Min X.; Liu G.; Zhu B.; Zhou L.; Zhang, X -X.; Zhu J. Adv. Funct. Mater. 2021, 31, 2100025.
[19]
(a) Song C.; Qi D.; Han Y.; Xu Y.; Xu H.; You S.; Wang W.; Wang C.; Wei Y.; Ma J. Environ. Sci. Technol. 2020, 54, 9025.
[19]
(b) Ma J.; An L.; Liu D.; Yao J.; Qi D.; Xu H.; Song C.; Cui F.; Chen X.; Ma J.; Wang W. Environ. Sci. Technol. 2022, 56, 9797.
[19]
(c) Qi D.; Liu Y.; Liu Y.; Liu Z.; Luo Y.; Xu H.; Zhou X.; Zhang J.; Yang H.; Wang W.; Chen X. Adv. Mater. 2020, 32, 2004401.
[20]
Yang H.; Sun Y.; Peng M.; Cai M.; Zhao B.; Li D.; Liang Z.; Jiang L. ACS Nano 2022, 16, 2511.
[21]
Xie M.; Zhang P.; Cao Y.; Yan Y.; Wang Z.; Jin C. npj Clean Water 2023, 6, 12.
[22]
Zhou X.; Li J.; Liu C.; Wang F.; Chen H.; Zhao C.; Sun H.; Zhu Z. Int. J. Energy Res. 2020, 44, 9213.
[23]
Shi L.; Shi Y.; Li R.; Chang J.; Zaouri N.; Ahmed E.; Jin Y.; Zhang C.; Zhuo S.; Wang P. ACS Sustainable Chem. Eng. 2018, 6, 8192.
[24]
(a) Zhu L.; Gao M.; Peh C. K. N.; Ho G. W. Mater. Horiz. 2018, 5, 323.
[24]
(b) Xiao L.; Chen X.; Yang X.; Sun J.; Geng J. ACS Appl. Polym. Mater. 2020, 2, 4273.
[25]
(a) Jain P. K.; Huang X.; El-Sayed I. H.; El-Sayed M. A. Acc. Chem. Res. 2008, 41, 1578.
[25]
(b) Liu G.; Xu J.; Wang K. Nano Energy 2017, 41, 269.
[26]
Gao M.; Connor P. K. N.; Ho G. W. Energy Environ. Sci. 2016, 9, 3151.
[27]
Yi L.; Ci S.; Luo S.; Shao P.; Hou Y.; Wen Z. Nano Energy 2017, 41, 600.
[28]
Wang J.; Li Y., Deng L.; Wei N.; Weng Y.; Dong S.; Qi D.; Qiu J.; Chen X.; Wu T. Adv. Mater. 2017, 29, 1603730.
[29]
Li W.; Feng W.; Wu S.; Wang W.; Yu D. Sep. Purif. Technol. 2022, 292, 120989.
[30]
Vélez-Cordero J. R.; Hernandez-Cordero J. Int. J. Therm. Sci. 2015, 96, 12.
[31]
(a) Song X.; Song H.; Xu N.; Yang H.; Zhou L.; Yu L.; Zhu J.; Xu J.; Chen K. J. Mater. Chem. A 2018, 6, 22976.
[31]
(b) Yang T.; Lin H.; Lin K.-T.; Jia B. Sustainable Mater. Technol. 2020, 25, e00182.
[32]
Kong Y.; Dan H.; Kong W.; Gao Y.; Shang Y.; Ji K.; Yue Q.; Gao B. J. Mater. Chem. A 2020, 8, 24734.
[33]
Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W. Adv Energy Mater. 2018, 8, 1800711.
[34]
(a) Fang J.; Liu J.; Gu J.; Liu Q.; Zhang W.; Su H.; Zhang D. Chem. Mater. 2018, 30, 6217.
[34]
(b) Zhang W.; Zhu W.; Shi S.; Hu N.; Suo Y.; Wang J. J. Mater. Chem. A 2018, 6, 16220.
[35]
(a) Wang X.; Liu Q.; Wu S.; Xu B.; Xu H. Adv. Mater. 2019, 31, 1807716.
[35]
(b) Wang Y.; Wang C.; Song X.; Huang M.; Megarajan S. K.; Shaukat S. F.; Jiang H. J. Mater. Chem. A 2018, 6, 9874.
[36]
(a) Liu Y.; Liu Z.; Huang Q.; Liang X.; Zhou X.; Fu H.; Wu Q.; Zhang J.; Xie W. J. Mater. Chem. A 2019, 7, 2581.
[36]
(b) Liu Y.; Yu S.; Feng R.; Bernard A.; Liu Y.; Zhang Y.; Duan H.; Shang W.; Tao P.; Song C. Adv. Mater. 2015, 27, 2768.
[37]
(a) Ren H.; Tang M.; Guan B.; Wang K.; Yang J.; Wang F.; Wang M.; Shan J.; Chen Z.; Wei D. Adv. Mater. 2017, 29, 1702590.
[37]
(b) Sajadi S. M.; Farokhnia N.; Irajizad P.; Hasnain M.; Ghasemi H. J. Mater. Chem. A 2016, 4, 4700.
[38]
(a) Shi L.; Shi Y.; Zhuo S.; Zhang C.; Aldrees Y.; Aleid S.; Wang P. Nano Energy 2019, 60, 222.
[38]
(b) Yi L.; Qi D.; Shao P.; Lei C.; Hou Y.; Cai P.; Wang G.; Chen X.; Wen Z. Nanoscale 2019, 11, 9958.
[39]
Li Z.; Wang C.; Su J.; Ling S.; Wang W.; An M. Sol. RRL 2019, 3, 1800206.
[40]
Wang W.; Wen H.; Shi J.; Su J.; Li Z.; Wang C.; Yan X. Sol. RRL 2019, 3, 1900180.
[41]
Jeon J.; Park S.; Lee B. Sol. Energy 2016, 132, 247.
[42]
Chen M.; He Y.; Zhu J.; Kim D. Energy Convers. Manage. 2016, 112, 21.
[43]
Zhou J.; Gu Y.; Deng Z.; Miao L.; Su H.; Wang P.; Shi J. Sustainable Mater. Technol. 2019, 19, e00090.
[44]
Choi W.; Park J. Y.; Kim Y. J. Ind. Eng. Chem. 2021, 95, 120.
[45]
Fu Y.; Mei T.; Wang G.; Guo A.; Dai G.; Wang S.; Wang J.; Li J.; Wang X. Appl. Therm. Eng. 2017, 114, 961.
[46]
Zheng Z.; Li H.; Zhang X.; Jiang H.; Geng X.; Li S.; Tu H.; Cheng X.; Yang P.; Wan Y. Nano Energy 2020, 68, 104298.
[47]
Wang Z.; Liu Y.; Tao P.; Shen Q.; Yi N.; Zhang F.; Liu Q.; Song C.; Zhang D.; Shang W. Small 2014, 10, 3234.
[48]
Guo A.; Fu Y.; Wang G.; Wang X. RSC Adv. 2017, 7, 4815.
[49]
Wang X.; He Y.; Liu X.; Cheng G.; Zhu J. Q. Appl. Energy 2017, 195, 414.
[50]
(a) Beyene H. D.; Werkneh A. A.; Bezabh H. K.; Ambaye T. G. Sustainable Mater. Technol. 2017, 13, 18.
[50]
(b) Iyahraja S.; Rajadurai J. S. AIP Adv. 2015, 5, 057103.
[51]
Cao H.; Cui T.; Wang W.; Li S.; Tang X.; Wang H.; Zhu G. Mater. Res. Express 2020, 7, 045005.
[52]
Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W., Adv. Energy Mater. 2018, 8, 1800711.
[53]
Gao Y.; Wu J.; Wang J.; Fan Y.; Zhang S.; Dai W. ACS Appl. Mater. Interfaces 2020, 12, 11036.
[54]
Su L.; Hu Y.; Ma Z.; Miao L.; Zhou J.; Ning Y.; Chang Z.; Wu B.; Cao M.; Xia R. Sol. Energy Mater. Sol. Cells 2020, 210, 110484.
[55]
Sheikh M.; Pazirofteh M.; Dehghani M.; Asghari M.; Rezakazemi M.; Valderrama C.; Cortina J.-L. Chem. Eng. J. 2020, 391, 123475.
[56]
Ye M.; Wang X.; Zhou P.; Chen R.; Gan Q.; Zhang T. Water Supply 2020, 20, 478.
[57]
(a) Nandi D. K.; Sen U. K.; Choudhury D.; Mitra S.; Sarkar S. K. ACS Appl. Mater. Interfaces 2014, 6, 6606.
[57]
(b) Zhu Y.; Chen G.; Xu X.; Yang G.; Liu M.; Shao Z. ACS Catal. 2017, 7, 3540.
[58]
Zhu L.; Sun L.; Zhang H.; Yu D.; Aslan H.; Zhao J.; Li Z.; Yu M.; Besenbacher F.; Sun Y. Nano Energy 2019, 57, 842.
[59]
Bai H.; Hu J.; Lam S. H.; Guo Y.; Zhu X.-M.; Yang Z.; Wang J. ACS Mater. Lett. 2022, 4, 1584.
[60]
Jiang H.; Ai L.; Chen M.; Jiang J. ACS Sustainable Chem. Eng. 2020, 8, 10833.
[61]
Wang P.; Gu Y.; Miao L.; Zhou J.; Su H.; Wei A.; Mu X.; Tian Y.; Shi J.; Cai H. Sustainable Mater. Technol. 2019, 20, e00106.
[62]
Xue C.; Huang R.; Xue R.; Chang Q.; Li N.; Zhang J.; Hu S.; Yang J. J. Alloys Compd. 2022, 909, 164843.
[63]
Song X.; Wang P.; Huang Y.; Zhu X.; Chio U.-F.; Wang F.; Wang G.; Wang W.; Liu B. Nano Res. 2023, DOI: 10.1007/s12274-023-5546-9.
[64]
Wang S.; Almenabawy S. M.; Kherani N. P.; Leung S. N.; O’Brien P. G. ACS Appl. Energy Mater. 2020, 3, 3378.
[65]
(a) Hu X.; Xu W.; Zhou L.; Tan Y.; Wang Y.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1604031.
[65]
(b) Jiang Q.; Tian L.; Liu K. K.; Tadepalli S.; Raliya R.; Biswas P.; Naik R. R.; Singamaneni S. Adv. Mater. 2016, 28, 9400.
[66]
(a) Kou H.; Liu Z.; Zhu B.; Macharia D. K.; Ahmed S.; Wu B.; Zhu M.; Liu X.; Chen Z. Desalination 2019, 462, 29.
[66]
(b) Wang Y.; Zhang L.; Wang P. ACS Sustainable Chem. Eng. 2016, 4, 1223.
[67]
(a) Liu C.; Cai C.; Ma F.; Zhao X.; Ahmad H. J. Colloid Interface Sci. 2020, 560, 103.
[67]
(b) Zhang Q.; Xiao X.; Wang G.; Ming X.; Liu X.; Wang H.; Yang H.; Xu W.; Wang X. J. Mater. Chem. A 2018, 6, 17212.
[68]
Xue G.; Liu K.; Chen Q.; Yang P.; Li J.; Ding T.; Duan J.; Qi B.; Zhou J. ACS Appl. Mater. Interfaces 2017, 9, 15052.
[69]
Xu N.; Hu X.; Xu W.; Li X.; Zhou L.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1606762.
[70]
Shi L.; Wang Y.; Zhang L.; Wang P. J. Mater. Chem. A 2017, 5, 16212.
[71]
(a) Behabtu N.; Young C. C.; Tsentalovich D. E.; Kleinerman O.; Wang X.; Ma A. W.; Bengio E. A.; Waarbeek R. F.; de Jong J. J.; Hoogerwerf R. E. Science 2013, 339, 182.
[71]
(b) Hone J.; Llaguno M.; Nemes N.; Johnson A.; Fischer J.; Walters D., Casavant M.; Schmidt J.; Smalley R. Appl. Phys. Lett. 2000, 77, 666.
[72]
Ghafurian M. M.; Niazmand H.; Dastjerd F. T.; Mahian O. Chem. Eng. Sci. 2019, 207, 79.
[73]
Guo C.-L.; Miao E.-D.; Zhao J.-X.; Liang L.; Liu Q. Sol. Energy 2019, 188, 1283.
[74]
Chen C.; Li Y.; Song J.; Yang Z.; Kuang Y.; Hitz E.; Jia C.; Gong A.; Jiang F.; Zhu J. Y.; Yang B.; Xie J.; Hu L. Adv. Mater. 2017, 29, 1701756.
[75]
Song J.; Li J.; Bai X.; Kang L.; Ma L.; Zhao N.; Wu S.; Xue Y.; Li J.; Ji X. J. Mater. Sci. Technol. 2021, 87, 83.
[76]
Deng Z.; Miao L.; Liu P.-F.; Zhou J.; Wang P.; Gu Y.; Wang X.; Cai H.; Sun L., Tanemura S. Nano Energy 2019, 55, 368.
[77]
Ito Y.; Tanabe Y.; Han J.; Fujita T.; Tanigaki K.; Chen M. Adv. Mater. 2015, 27, 4302.
[78]
Kim K.; Yu S.; An C.; Kim S.-W.; Jang J.-H. ACS Appl. Mater. Inter. 2018, 10, 15602.
[79]
Song C.; Irshad M. S.; Jin Y.; Hu J.; Liu W. Desalination 2022, 544, 116125.
[80]
Luo Q.; Yang Y.; Wang K.; Yu J.; Wang R.; Ji D.; Qin X. Sci. China Mater. 2023, DOI: 10.1007/s40843-023-2431-3.
[81]
Li L.; Liu Y.; Hao P.; Wang Z.; Fu L.; Ma Z.; Zhou J. Biomaterials 2015, 41, 132.
[82]
Xiao L.; Sun J.; Liu L.; Hu R.; Lu H.; Cheng C.; Huang Y.; Wang S.; Geng J. ACS Appl. Mater. Interfaces 2017, 9, 5382.
[83]
(a) Huang X.; Yu Y.-H.; de Llergo O. L.; Marquez S. M.; Cheng Z. RSC Adv. 2017, 7, 9495.
[83]
(b) Yang K.; Xu H.; Cheng L.; Sun C.; Wang J.; Liu Z. Adv. Mater. 2012, 24, 5586.
[84]
Wang Z.; Yan Y.; Shen X.; Jin C.; Sun Q.; Li H. J. Mater. Chem. A 2019, 7, 20706.
[85]
Mu P.; Bai W.; Fan Y.; Zhang Z.; Sun H.; Zhu Z.; Liang W.; Li A. J. Mater. Chem. A 2019, 7, 9673.
[86]
Zhou X.; Zhao F.; Guo Y.; Rosenberger B.; Yu G. Sci. Adv. 2019, 5, eaaw5484.
[87]
He J.; Foysal T. R.; Yang H.; Islam M.; Li L.; Li W.; Cui W. Mater. Lett. 2020, 261, 126962.
[88]
Zheng Z.; Liu H.; Wu D.; Wang X. Chem. Eng. J. 2022, 440, 135862.
[89]
Xu Y.; Tang C.; Ma J.; Liu D.; Qi D.; You S.; Cui F.; Wei Y.; Wang W. Environ. Sci. Technol. 2020, 54, 5150.
[90]
Zhang J.; Luo X.; Zhang X.; Xu Y.; Xu H.; Zuo J.; Liu D.; Cui F.; Wang W. Chin. Chem. Lett. 2021, 32, 1442.
[91]
Wu Y.; Shen L.; Zhang C.; Gao H.; Chen J.; Jin L.; Lin P.; Zhang H.; Xia Y. Desalination 2021, 505, 114766.
[92]
Lu X.; Yuan P.; Zhang W.; Wu Q.; Wang X.; Zhao M.; Sun P.; Huang W.; Fan Q. Polym. Chem. 2018, 9, 3118.
[93]
Shao B.; Wang Y.; Wu X.; Lu Y.; Yang X.; Chen G. Y.; Owens G.; Xu H. J. Mater. Chem. A 2020, 8, 11665.
[94]
Chen P.; Ma Y.; Zheng Z.; Wu C.; Wang Y.; Liang G. Nat. Commun. 2019, 10, 1192.
[95]
Li H. C.; Li H. N.; Zou L. Y.; Li Q.; Chen P. F.; Quan X. N.; Deng K.; Sheng C. Q.; Ji J.; Fan. Q.; Xu Z. K.; Wan J. H. J. Mater. Chem. A 2023, 11, 2933.
[96]
Ma S.; Qarony W.; Hossain M. I.; Yip C. T.; Tsang Y. H. Sol. Energy Mater. Sol. Cells 2019, 196, 36.
[97]
(a) Elimelech M.; Phillip W. A. Science 2011, 333, 712.
[97]
(b) Gao M.; Zhu L.; Peh C. K.; Ho G. W. Energy Environ. Sci. 2019, 12, 841.
[98]
(a) Shi Y.; Yang J.; Gao F.; Zhang Q. ACS Nano 2023, 17, 1879.
[98]
(b) Kong L.; Liu M.; Huang H.; Xu Y.; Bu X. H. Adv. Energy Mater. 2022, 12, 2100172.
[98]
(c) Li L. L.; Liu S.; Zhang Q.; Hu N. T.; Wei L. M.; Yang Z.; Wei H. Acta Phys.-Chim. Sin. 2017, 33, 1960. (in Chinese)
[98]
( 李路路, 刘帅, 章琴, 胡南滔, 魏良明, 杨志, 魏浩, 物理化学学报, 2017, 33, 1960.)
[98]
(d) Zhou B.; Chen L. Acta Chim. Sinica 2015, 73, 487. (in Chinese)
[98]
( 周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
[99]
Cui W.-R.; Zhang C.-R.; Liang R.-P.; Liu J.; Qiu J.-D. ACS Appl. Mater. Inter. 2021, 13, 31561.
[100]
Xia Z. J.; Yang H. C.; Chen Z.; Waldman R. Z.; Zhao Y.; Zhang C.; Patel S. N.; Darling S. B. Adv. Mater. Interfaces 2019, 6, 1900254.
[101]
Jia S.; Hao L.; Liu Y.; Lin E.; Liu W.; Yang Y.; Tian Y.; Peng Y.; Cheng P.; Chen Y.; Zhang Z. ACS Mater. Lett. 2023, 5, 458.
[102]
Fang Z.; Bueken B.; De Vos D. E.; Fischer R. A. Angew. Chem., Int. Ed. 2015, 54, 7234.
[103]
Chen Z.; Su Y.; Tang X.; Zhang X.; Duan C.; Huang F.; Li Y. Sol. RRL 2021, 5, 2100762.
[104]
(a) Wang H.; Zhao J.; Li Y.; Cao Y.; Zhu Z.; Wang M.; Zhang R.; Pan F.; Jiang Z. Nano-Micro Lett. 2022, 14, 216.
[104]
(b) Wang M.; Wang Y.; Zhao J.; Zou J.; Liang X.; Zhu Z.; Zhu J.; Wang H.; Wang Y.; Pan F.; Jang Z. Angew. Chem., Int. Ed. 2023, 62, e202219084.
[104]
(c) Zhou W.; Wei M.; Zhang X.; Xu F.; Wang Y. ACS Appl. Mater. Inter. 2019, 11, 16847.
[105]
(a) Sumida K.; Rogow D. L.; Mason J. A.; McDonald T. M.; Bloch E. D.; Herm Z. R.; Bae T.-H.; Long J. R. Chem. Rev. 2012, 112, 724.
[105]
(b) Wang C.; Kim J.; Tang J.; Kim M.; Lim H.; Malgras V.; You J.; Xu Q.; Li J.; Yamauchi Y. Chem 2020, 6, 19.
[105]
(c) Zhong M.; Kong L.; Zhao K.; Zhang Y. H.; Li N.; Bu X. H. Adv. Sci. 2021, 8, 2001980.
[106]
Chen G.; Jiang Z.; Li A.; Chen X.; Ma Z.; Song H. J. Mater. Chem. A 2021, 9, 16805.
[107]
Ma Q.; Yin P.; Zhao M.; Luo Z.; Huang Y.; He Q.; Yu Y.; Liu Z.; Hu Z.; Chen B. Adv. Mater. 2019, 31, 1808249.
[108]
Wang J.; Wang W.; Li J.; Mu X.; Yan X; Wang Z.; Su J.; Lei T.; Wang C. ACS Appl. Mater. Inter. 2021, 13, 45944.
[109]
Zhou S.; Kong X.; Str?mme M.; Xu C. ACS Mater. Lett. 2022, 4, 1058.
[110]
Yao Z. Q.; Wang K.; Liu R.; Yuan Y. J.; Pang J. J.; Li Q. W.; Shao T. Y.; Li Z. G.; Feng R.; Zou B.; Li W.; Xu J.; Bu X. H. Angew. Chem., Int. Ed. 2022, 61, e202202073.
Outlines

/