Recent Advance of Diazo Compounds in Polymer Synthesis★
Received date: 2023-05-21
Online published: 2023-06-25
Supported by
Beijing National Laboratory of Molecular Sciences(8202200300)
Based on the well development of diazo compound transformations in organic synthesis, it is expected to extend its applications to the field of polymer synthesis. It is of vital importance to transform efficient organic reactions of diazo compounds into new polymerization methodology in order to afford polymers with new structures and functions. Currently, there is still great development potential in the application of diazo compounds in polymer synthesis. This review highlights the recent advancements of polymer synthesis chemistry with diazo compounds, including chain-growth polymerization, step-growth polymerization, end-group functionalization and post-polymerization modification. Transition-metal-catalyzed chain-growth polymerization of diazoacetates constructs C—C main chain from one carbon unit. Through the development of catalytic diazoacetate polymerization, the synthesis of high molecular weight polymers, stereocontrol polymerization and living/controlled polymerization can be realized successively. The stepwise polymerization of diazo compounds originated from their efficient organic conversions. The insertion reaction of diazo compounds into O—H and N—H bonds can be extended to stepwise polymerization to afford polyethers, polyesters and polyamines that are not easily accessible through other synthetic methods, while cross-coupling polymerization of diazo compounds via metal carbene insertion-migration mechanism can realize the synthesis of polymers with novel structures. Diazoacetates and diazomalonates can be employed to regulate the terminal structures of polymers synthesized through metal-catalyzed vinyl addition polymerization or ring-opening metathesis polymerization of olefins, and successively end-capped by metal carbene. The post-polymerization modifications based on diazo compounds can be applied to the introduction of polar functional groups into polyolefin. Compared to the copolymerization of polar olefins, the post-polymerization functionalization strategy avoids the depressed reactivity of varied monomers, and can be applicable to a broad scope of functional groups. The thermal and mechanical properties of polymers can be improved by this method. Finally, the future challenges in expanding the approaches on polymer chemistry of diazo compounds are prospected in this review.
Lefei Yu , Xing-Qi Yao , Jianbo Wang . Recent Advance of Diazo Compounds in Polymer Synthesis★[J]. Acta Chimica Sinica, 2023 , 81(8) : 1015 -1029 . DOI: 10.6023/A23050244
[1] | Qiu D.; Wang J. Recent Developments of Diazo Compounds in Organic Synthesis, World Scientific, London, 2021. |
[2] | Xiao Q.; Zhang Y.; Wang J. Acc. Chem. Res. 2013, 46, 236. |
[3] | Qiu D.; Qiu M.; Ma R.; Zhang Y.; Wang J. Acta Chim. Sinica 2016, 74, 472. (in Chinese) |
[3] | ( 邱頔, 邱梦龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472.) |
[4] | Gao Y.; Wang J. Chin. J. Org. Chem. 2018, 38, 1275. (in Chinese) |
[4] | ( 郜云鹏, 王剑波, 有机化学, 2018, 38, 1275.) |
[5] | For an example, see: Liu, Z.; Fu, T.; Huo, J.; Feng, S.; Wang, J. Chin. J. Chem. 2018, 36, 945. |
[6] | Jellema E.; Jongerius A. L.; Reek J. N. H.; de Bruin B. Chem. Soc. Rev. 2010, 39, 1706. |
[7] | Cahoon C. R.; Bielawski C. W. Coord. Chem. Rev. 2018, 374, 261. |
[8] | Ihara E.; Shimomoto H. Polymer 2019, 174, 234. |
[9] | Li F.; Xiao L.; Li B.; Hu X.; Liu L. Coord. Chem. Rev. 2022, 473, 214806. |
[10] | Liu L.; Song Y.; Li H. Polym. Int. 2002, 51, 1047. |
[11] | Ihara E.; Haida N.; Iio M.; Inoue K. Macromolecules 2003, 36, 36. |
[12] | Ihara E.; Fujioka M.; Haida N.; Itoh T.; Inoue K. Macromolecules 2005, 38, 2101. |
[13] | Ihara E.; Hiraren T.; Ito T.; Inoue K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1638. |
[14] | Ihara E.; Hiraren T.; Itoh T.; Inoue K. Polym. J. 2008, 40, 1094. |
[15] | Ihara E.; Goto Y.; Itoh T.; Inoue K. Polym. J. 2009, 41, 1117. |
[16] | Ihara E.; Nakada A.; Itoh T.; Inoue K. Macromolecules 2006, 39, 6440. |
[17] | Ihara E.; Ishiguro Y.; Yoshida N.; Hiraren T.; Itoh T.; Inoue K. Macromolecules 2009, 42, 8608. |
[18] | Ihara E.; Takahashi H.; Akazawa M.; Itoh T.; Inoue K. Macromolecules 2011, 44, 3287. |
[19] | Ihara E.; Akazawa M.; Itoh T.; Fujii M.; Yamashita K.; Inoue K.; Itoh T.; Shimomoto H. Macromolecules 2012, 45, 6869. |
[20] | Ihara E.; Okada R.; Sogai T.; Asano T.; Kida M.; Inoue K.; Itoh T.; Shimomoto H.; Ishibashi Y.; Asahi T. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1020. |
[21] | Takaya T.; Oda T.; Shibazaki Y.; Hayashi Y.; Shimomoto H.; Ihara E.; Ishibashi Y.; Asahi T.; Iwata K. Macromolecules 2018, 51, 5430. |
[22] | Shimomoto H.; Itoh E.; Itoh T.; Ihara E.; Hoshikawa N.; Hasegawa N. Macromolecules 2014, 47, 4169. |
[23] | Shimomoto H.; Shimizu K.; Takeda C.; Kikuchi M.; Kudo T.; Mukai H.; Itoh T.; Ihara E.; Hoshikawa N.; Koiwai A.; Hasegawa N. Polym. Chem. 2015, 6, 8124. |
[24] | Shimomoto H.; Kudo T.; Tsunematsu S.; Itoh T.; Ihara E. Macromolecules 2018, 51, 328. |
[25] | Shimomoto H.; Hohsaki R.; Hiramatsu D.; Itoh T.; Ihara E. Macromolecules 2020, 53, 6369. |
[26] | Shimomoto H.; Nakajima M.; Watanabe A.; Murakami H.; Itoh T.; Ihara E. Polym. Chem. 2020, 11, 1774. |
[27] | Shimomoto H.; Kawamata J.; Murakami H.; Yamashita K.; Itoh T.; Ihara E. Polym. Chem. 2017, 8, 4030. |
[28] | Shimomoto H.; Ichihara S.; Hayashi H.; Itoh T.; Ihara E. Macromolecules 2019, 52, 6976. |
[29] | Shimomoto H.; Miyano Y.; Kinoshita K.; Itoh T.; Ihara E. Polym. Chem. 2023, 14, 1007. |
[30] | Yao X.-Q.; Wang Y.-S.; Wang J. Macromolecules 2021, 54, 10914. |
[31] | Shimomoto H.; Hayashi H.; Aramasu K.; Itoh T.; Ihara E. Macromolecules 2022, 55, 5985. |
[32] | Shimomoto H.; Asano H.; Itoh T.; Ihara E. Polym. Chem. 2015, 6, 4709. |
[33] | Chu J.-H.; Xu X.-H.; Kang S.-M.; Liu N.; Wu Z.-Q. J. Am. Chem. Soc. 2018, 140, 17773. |
[34] | Li N.-N.; Li X.-L.; Xu L.; Liu N.; Wu Z.-Q. Macromolecules 2019, 52, 7260. |
[35] | Zhou L.; Gao R.-T.; Zhang X.-J.; He K.; Xu L.; Liu N.; Wu Z.-Q. Macromol. Rapid Commun. 2022, 43, 2100630. |
[36] | Gao B.-R.; Wu Y.-J.; Xu L.; Zou H.; Zhou L.; Liu N.; Wu Z.-Q. ACS Macro. Lett. 2022, 11, 785. |
[37] | Zou H.; Tai S.; Zhao S.-Y.; Zhou L.; Liu N.; Wu Z.-Q. Chem. Commun. 2023, 59, 4201. |
[38] | Wang M.-Q.; Zou H.; Liu W.-B.; Liu N.; Wu Z.-Q. ACS Macro Lett. 2022, 11, 179. |
[39] | Xu X.-H.; Kang S.-M.; Gao R.-T.; Liu N.; Wu Z.-Q. Angew. Chem. Int. Ed. 2023, 62, e202300882. |
[40] | Zhukhovitskiy A. V.; Kobylianskii I. J.; Thomas A. A.; Evans A. M.; Delaney C. P.; Flanders N. C.; Denmark S. E.; Dichtel W. R.; Toste F. D. J. Am. Chem. Soc. 2019, 141, 6473. |
[41] | Hetterscheid D. G. H.; Hendriksen C.; Dzik W. I.; Smits J. M. M.; van Eck E. R. H.; Rowan A. E.; Busico V.; Vacatello M.; Van Axel Castelli V.; Segre A.; Jellema E.; Bloemberg T. G.; de Bruin B. J. Am. Chem. Soc. 2006, 128, 9746. |
[42] | Jellema E.; Budzelaar P. H. M.; Reek J. N. H.; de Bruin B. J. Am. Chem. Soc. 2007, 129, 11631. |
[43] | Walters A. J. C.; Troeppner O.; Ivanovi?-Burmazovi? I.; Tejel C.; del Río M. P.; Reek J. N. H.; de Bruin B. Angew. Chem. Int. Ed. 2012, 51, 5157. |
[44] | Walters A. J. C.; Jellema E.; Finger M.; Aarnoutse P.; Smits J. M. M.; Reek J. N. H.; de Bruin B. ACS Catal. 2012, 2, 246. |
[45] | Walters A. J. C.; Reek J. N. H.; de Bruin B. ACS Catal. 2014, 4, 1376. |
[46] | Olivos Suarez A. I.; del Río M. P.; Remerie K.; Reek J. N. H.; de Bruin B. ACS Catal. 2012, 2, 2046. |
[47] | Franssen N. M. G.; Reek J. N. H.; de Bruin B. Dalton Trans. 2013, 42, 9058. |
[48] | Tromp D. S.; Lankelma M.; de Valk H.; de Josselin de Jong E.; de Bruin B. Macromolecules 2018, 51, 7248. |
[49] | Zhou L.; Xu L.; Song X.; Kang S.-M.; Liu N.; Wu Z.-Q. Nat. Commun. 2022, 13, 811. |
[50] | Bai J.; Burke L. D.; Shea K. J. J. Am. Chem. Soc. 2007, 129, 4981. |
[51] | Wada N.; Morisaki Y.; Chujo Y. Macromolecules 2009, 42, 1439. |
[52] | Kang S.; Lu S. J.; Bielawski C. W. ACS Macro Lett. 2022, 11, 7. |
[53] | Ihara E.; Saiki K.; Goto Y.; Itoh T.; Inoue K. Macromolecules 2010, 43, 4589. |
[54] | Ihara E.; Hara Y.; Itoh T.; Inoue K. Macromolecules 2011, 44, 5955. |
[55] | Shimomoto H.; Mori T.; Itoh T.; Ihara E. Macromolecules 2019, 52, 5761. |
[56] | Wang X.; Ding Y.; Tao Y.; Wang Z.; Wang Z.; Yan J. Polym. Chem. 2020, 11, 1708. |
[57] | Shimomoto H.; Mukai H.; Bekku H.; Itoh T.; Ihara E. Macromolecules 2017, 50, 9233. |
[58] | Wang Y.-C.; Shao Y.-J.; Liou G.-S.; Nagao S.; Makino Y.; Akiyama E.; Kato M.; Shimomoto H.; Ihara E. Polym. Chem. 2022, 13, 6369. |
[59] | Zhai X.-Y.; Wang X.-Q.; Wu B.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21. |
[60] | Shimomoto H.; Hara Y.; Itoh T.; Ihara E. Macromolecules 2013, 46, 5483. |
[61] | Xiao L.; Li Y.; Liao L.; Liu L. New J. Chem. 2013, 37, 1874. |
[62] | Shimomoto H.; Moriya T.; Mori T.; Itoh T.; Kanehashi S.; Ogino K.; Ihara E. ACS Omega 2020, 5, 4787. |
[63] | Jiang K.; Zhang L.; Zhao Y.; Lin J.; Chen M. Macromolecules 2018, 51, 9662. |
[64] | Zhou Q.; Gao Y.; Xiao Y.; Yu L.; Fu Z.; Li Z.; Wang J. Polym. Chem. 2019, 10, 569. |
[65] | Gao X.; Zhang Q.; Hu J.; Zhang H. Polymer 2020, 207, 122827. |
[66] | Yao X.-Q.; Wang Y.-S.; Wang J. Chem. Commun. 2022, 58, 4032. |
[67] | Yu L.; Zhou Q.; Gao Y.; Fu Z.; Xiao Y.; Li Z.-C.; Wang J. Chem. Commun. 2022, 58, 3909. |
[68] | Fu Z.; Zhou Q.; Xiao Y.; Wang J. Polym. Chem. 2022, 13, 2123. |
[69] | Xiao Y.; Zhou Q.; Fu Z.; Yu L.; Wang J. Macromolecules 2022, 55, 2424. |
[70] | Wang X.; Nozaki K. J. Am. Chem. Soc. 2018, 140, 15635. |
[71] | Ji M.; Zheng S.; Zou C.; Chen M. Polym. Chem. 2022, 13, 4782. |
[72] | Wang X.; Sun Y.; Yao X.-Q.; Xu Y.; Wang J. Macromolecules 2022, 55, 8866. |
[73] | Boaen N. K.; Hillmyer M. A. Chem. Soc. Rev. 2005, 34, 267. |
[74] | Williamson J. B.; Lewis S. E.; Johnson III R. R.; Manning I. M.; Leibfarth F. A. Angew. Chem. Int. Ed. 2019, 58, 8654. |
[75] | Plummer C. M.; Li L.; Chen Y. Polym. Chem. 2020, 11, 6862. |
[76] | Rodriguez G. M.; Díaz-Requejo M. M.; Pérez P. J. Macromolecules 2021, 54, 4971. |
[77] | Osterwinter G. J.; Navarro-Crespo R.; Prucker O.; Henze M.; Rühe J. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 3276. |
[78] | Kotrade P. F.; Rühe J. Angew. Chem. Int. Ed. 2017, 56, 14405. |
[79] | Sch?lch S.; Sch?fer J.-L.; Meckel T.; Brandstetter T.; Biesalski M.; Rühe J. Biomacromolecules 2021, 22, 2864. |
[80] | Kost J.; Bleiziffer A.; Rusitov D.; Rühe J. J. Am. Chem. Soc. 2021, 143, 10108. |
[81] | Díaz-Requejo M. M.; Wehrmann P.; Leatherman M. D.; Trofimenko S.; Mecking S.; Brookhart M.; Pérez P. J. Macromolecules 2005, 38, 4966. |
[82] | Urbano J.; Korthals B.; Díaz-Requejo M. M.; Pérez P. J.; Mecking S. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4439. |
[83] | Beltrán á.; Gómez-Emeterio B. P.; Marco C.; Ellis G.; Parellada M. D.; Díaz-Requejo M. M.; Corona-Galván S.; Pérez P. J. Macromolecules 2012, 45, 9267. |
[84] | Lepage M. L.; Simhadri C.; Liu C.; Takaffoli M.; Bi L.; Crawford B.; Milani A. S.; Wulff J. E. Science 2019, 366, 875. |
[85] | Simhadri C.; Bi L.; Lepage M. L.; Takaffoli M.; Pei Z.; Musolino S. F.; Milani A. S.; DiLabio G. A.; Wulff J. E. Chem. Sci. 2021, 12, 4147. |
[86] | Musolino S. F.; Pei Z.; Bi L.; DiLabio G. A.; Wulff J. E. Chem. Sci. 2021, 12, 12138. |
[87] | Musolino S. F.; Mahbod M.; Nazir R.; Bi L.; Graham H. A.; Milani A. S.; Wulff J. E. Polym. Chem. 2022, 13, 3833. |
[88] | Clarke R. W.; Sandmeier T.; Franklin K. A.; Reich D.; Zhang X.; Vengallur N.; Patra T. K.; Tannenbaum R. J.; Adhikari S.; Kumar S. K.; Rovis T.; Chen E. Y.-X. Nature 2023, 616, 731. |
[89] | Yang S.; Yi S.; Yun J.; Li N.; Jiang Y.; Huang Z.; Xu C.; He C.; Pan X. Macromolecules 2022, 55, 3423. |
/
〈 |
|
〉 |