Article

A Time-Series Signal Classification Algorithm and Its Application to Nanopore Ionic Current Signal Identification

  • Xue Ni ,
  • Kaili Xin ,
  • Zhengli Hu ,
  • Cuiling Jiang ,
  • Yongjing Wan ,
  • Yi-Lun Ying ,
  • Yi-Tao Long
Expand
  • a School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237
    b School of Chemistry and Chemical Engineering, Molecular Sensing and Imaging Center (MSIC), Nanjing University, Nanjing 210023
Dedicated to the 90th anniversary of Acta Chimica Sinica.
† These authors contributed equally to this work.

Received date: 2023-04-03

  Online published: 2023-06-26

Supported by

Ministry of Science and Technology Key R&D Program of China(2022YFA1304604); National Natural Science Foundation of China(22106066); National Natural Science Foundation of China(22027806)

Abstract

Nanopore-based single molecular analysis technique usually uses time-domain features such as time-current scatter plots of blocking currents for event recognition. However, as the time-domain features overlap with each other, the substances with extremely similar molecular structures are difficult to be accurately discriminated using traditional nanopore recognition methods. The differences in the deep feature representations need fully explored to obtain credible recognition results, thus improving the recognition accuracy of nanopore ionic current signals. Here, a time-series signal classification algorithm is proposed in this paper: firstly, the original signal is framed with overlapping sliding windows to generate sub-signals and extract their shallow feature information; then a time-series signal classification network based on Emphasized Channel Attention, Propagation and Aggregation in time delay neural network (ECAPA-TDNN) is proposed to develop a multi-branch inter-layer feature fusion model for deep feature extraction, where the multi-branch multi-level attention module of this model (RepVGG-SE-Res2Block, RSR-Block) obtains multi-scale features by constructing a feature pyramid structure within each residual block, reduces the inference speed based on structural reparameterization techniques while ensuring the model performance, and introduces Adaptively Spatial Feature Fusion (ASFF) to fuse the features of different layers in the network; finally, a credible statistical prediction strategy is used to obtain reliable classification results by counting the classification probabilities of sub-signals. The experimental results show that for the peptide sequences N'-DDFFIFFDD-C' (DF_I) and N'-DDFFLFFDD- C' (DF_L) containing only the different amino acids I (isoleucine) and L (leucine), which are isomers of each other, the algorithm achieves a recognition accuracy of 99.00%, obviously improving the sensing capability of nanopores for single molecules with similar or even identical molecular weights.

Cite this article

Xue Ni , Kaili Xin , Zhengli Hu , Cuiling Jiang , Yongjing Wan , Yi-Lun Ying , Yi-Tao Long . A Time-Series Signal Classification Algorithm and Its Application to Nanopore Ionic Current Signal Identification[J]. Acta Chimica Sinica, 2023 , 81(8) : 912 -919 . DOI: 10.6023/A23040113

References

[1]
Afshar Bakshloo M.; Kasianowicz J. J.; Pastoriza-Gallego M.; Mathé J.; Daniel R.; Piguet F.; Oukhaled A. J. Am. Chem. Soc. 2022, 144, 2716.
[2]
Derrington I. M.; Butler T. Z.; Collins M. D.; Manrao E.; Pavlenok M.; Niederweis M.; Gundlach J. H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16060.
[3]
Hu Z.-L.; Huo M.-Z.; Ying Y.-L.; Long Y.-T. Angew. Chem., Int. Ed. 2021, 60, 14738.
[4]
Pratanwanich P. N.; Yao F.; Chen Y.; Koh C. W.; Wan Y. K.; Hendra C.; Poon P.; Goh Y. T.; Yap P. M.; Chooi J. Y. Nat. Biotechnol. 2021, 39, 1394.
[5]
Goenka S. D.; Gorzynski J. E.; Shafin K.; Fisk D. G.; Pesout T.; Jensen T. D.; Monlong J.; Chang P. C.; Baid G.; Bernstein J. A. Nat. Biotechnol. 2022, 40, 1035.
[6]
Sheng Y.; Zhou K.; Liu L.; Wu H.-C. Angew. Chem., Int. Ed. 2022, 61, e202200866.
[7]
Ju Y.; Pu M.; Sun K.; Song G.; Geng J. Chem. - Asian J. 2022, 17, e202200774.
[8]
Zhang Z.; Li T.; Sheng Y.; Liu L.; Wu H.-C. Small 2019, 15, 1804078.
[9]
Tsutsui M.; Yokota K.; Yoshida T.; Hotehama C.; Kowada H.; Esaki Y.; Taniguchi M.; Washio T.; Kawai T. ACS Sens. 2019, 4, 748.
[10]
Tanimoto I. M. F.; Cressiot B.; Greive S. J.; Le Pioufle B.; Bacri L.; Pelta J. Nano Res. 2022, 15, 9906.
[11]
Wu X. Y.; Ying Y. L.; Long Y. T. Chem. J. Chin. Univ. 2019, 40, 1825. (in Chinese)
[11]
( 武雪原, 应佚伦, 龙亿涛, 高等学校化学学报, 2019, 40, 1825.)
[12]
Wang L. Y.; Wang H. W.; Lu S. M.; Long Y. T. Chin. J. Anal. Chem. 2021, 49, 1166. (in Chinese)
[12]
( 王凌远, 王浩炜, 芦思珉, 龙亿涛, 分析化学, 2021, 49, 1166.)
[13]
Lu Y.; Hu Z. L.; Ying Y. L.; Long Y. T. J. Instrum. Anal. 2019, 38, 129. (in Chinese)
[13]
( 路瑶, 胡正利, 应佚伦, 龙亿涛, 分析测试学报, 2019, 38, 129.)
[14]
Chen Z.; Wang Z.; Xu Y.; Zhang X.; Tian B.; Bai J. Chem. Sci. 2021, 12, 15750.
[15]
Zernia S.; van der Heide N. J.; Galenkamp N. S.; Gouridis G.; Maglia G. ACS Nano 2020, 14, 2296.
[16]
Niu H. Y.; Hu Z. L.; Ying Y. L.; Long Y. T. Acta Chim. Sinica 2019, 77, 989. (in Chinese)
[16]
( 牛红艳, 胡正利, 应佚伦, 龙亿涛, 化学学报, 2019, 77, 989.)
[17]
Li M. Y.; Ying Y. L.; Long Y. T. Acta Chim. Sinica 2019, 77, 984. (in Chinese)
[17]
( 李孟寅, 应佚伦, 龙亿涛, 化学学报, 2019, 77, 984.)
[18]
Huo M.-Z.; Li M.-Y.; Ying Y.-L.; Long Y.-T. Anal. Chem. 2021, 93, 11364.
[19]
Ouldali H.; Sarthak K.; Ensslen T.; Piguet F.; Manivet P.; Pelta J.; Behrends J. C.; Aksimentiev A.; Oukhaled A. Nat. Biotechnol. 2020, 38, 176.
[20]
Xin K.-L.; Hu Z.-L.; Liu S.-C.; Li X.; Li J.-G.; Niu H.; Ying Y.-L.; Long Y.-T. Angew. Chem., Int. Ed. 2022, 61, e202209970.
[21]
Hu R.; Rodrigues J. V.; Waduge P.; Yamazaki H.; Cressiot B.; Chishti Y.; Makowski L.; Yu D.; Shakhnovich E.; Zhao Q. ACS Nano 2018, 12, 4494.
[22]
Liu Y.; Zhang S.; Wang Y.; Wang L.; Cao Z.; Sun W.; Fan P.; Zhang P.; Chen H. Y.; Huang S. J. Am. Chem. Soc. 2022, 144, 13717.
[23]
Li S. J.; Li X.; Wan Y.-J.; Ying Y.-L.; Yu R.-J.; Long Y.-T. Chem. - Asian J. 2023, 18, e202201144.
[24]
Liu S.-C.; Li M.-X.; Li M.-Y.; Wang Y.-Q.; Ying Y.-L.; Wan Y.-J.; Long Y.-T. Faraday Discuss. 2018, 210, 87.
[25]
Li X.; Ying Y.-L.; Fu X.-X.; Wan Y.-J.; Long Y.-T. Angew. Chem., Int. Ed. 2021, 60, 24582.
[26]
Desplanques B.; Thienpondt J.; Demuynck K.In 21st Annual Conference of the International Speech Communication Association (INTERSPEECH 2020), Shanghai, 2020, pp. 3830-3834.
[27]
Morlet J.; Arens G.; Fourgeau E.; Giard D. Geophysics 1982, 47, 222.
[28]
Niu H.; Li M.-Y.; Ying Y.-L.; Long Y.-T. Chem. Sci. 2022, 13, 2456.
[29]
Cao C.; Li M.-Y.; Cirauqui N.; Wang Y.-Q.; Dal Peraro M.; Tian H.; Long Y.-T. Nat. Commun. 2018, 9, 2823.
[30]
Fawcett T. Pattern Recognit. Lett. 2006, 27, 861.
[31]
Van der Maaten L.; Hinton G. J. Mach. Learn. Res. 2008, 9, 2579.
[32]
Yang C. Y.; Gu Z.; Hu Z. L.; Ying Y. L.; Long Y. T. J. Electrochem. 2019, 25, 312. (in Chinese)
[32]
( 杨铖宇, 顾震, 胡正利, 应佚伦, 龙亿涛, 电化学, 2019, 25, 312.)
Outlines

/