Article

Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target

  • Yuhan Wu ,
  • Dongdong Zhang ,
  • Hongyu Yin ,
  • Zhengnan Chen ,
  • Wen Zhao ,
  • Yuhua Chi
Expand
  • School of Materials Science and Engineering in China University of Petroleum (East China), Qingdao 266580, China

Received date: 2023-04-21

  Online published: 2023-06-26

Abstract

Photocatalytic reduction of CO2 into usable chemical products can effectively alleviate the two major problems of greenhouse effect and resource shortage, and help to achieve the great goals of “carbon peak” and “carbon neutrality”. However, due to the influence of quantum efficiency and low product selectivity, it is still not possible to apply it to large-scale industrial production. Among them, the photocatalyst plays a key role. Metal sulfides are considered to be a class of promising photocatalysts due to their good light absorption ability and reduction potential. Based on the research of two-dimensional (2D) In2S3, a 2D In2S2X (X=Se, Te) Janus structure is designed using density functional theory (DFT). In2S2X not only possesses suitable band edge positions and moderate bandgap for photocatalytic CO2 reduction, but also has excellent visible light absorption. Moreover, the valence band maximum (VBM) and conduction band minimum (CBM) of In2S2X are contributed by the bottom and top atoms, respectively, so that the reduction and oxidation reactions are spatially separated and the photocatalytic efficiency is improved. In particular, due to the intrinsic polarization, the direction of the built-in electric field generated by In2S2X is just opposite to the direction of electronic transition, which can improve the carrier mobility. On this basis, different concentrations of vacancy defects are introduced on the surface, and its stable configuration, electronic structure and absorption spectrum are analyzed. Calculation of the CO2 reduction pathways reveal that the vacancy concentration can effectively regulate the selectivity of reduction products, and the catalysts with single-vacancy and double-vacancy surfaces reduced CO2 to HCOOH and HCHO, respectively. The mechanism of the effect of vacancy concentration on the catalytic performance is further revealed. Vs-In2S2Se and Vd-In2S2Te show more excellent photocatalytic performance in the process of reducing CO2 to HCOOH and HCHO, respectively. This work provides some theoretical guidance for experimental design and preparation of highly efficient photocatalysts.

Cite this article

Yuhan Wu , Dongdong Zhang , Hongyu Yin , Zhengnan Chen , Wen Zhao , Yuhua Chi . Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target[J]. Acta Chimica Sinica, 2023 , 81(9) : 1148 -1156 . DOI: 10.6023/A23040155

References

[1]
Zhang, Y.; Wang, S.-X.; Yang, R.; Dai, T.-Y.; Zhang, N.; Xi, P.-X.; Yan, C.-H. Acta Chim. Sinica 2020, 78, 1455. (in Chinese)
[1]
(张宇, 王世兴, 杨蕊, 戴腾远, 张楠, 席聘贤, 严纯华, 化学学报, 2020, 78, 1455.)
[2]
Zhao, Y.; Wang, Y. B.; Wang, T. H. Renewable Resources and Circular Economy 2020, 13, 5. (in Chinese)
[2]
(赵毅, 王永斌, 王添颢, 再生资源与循环经济, 2020, 13, 5.)
[3]
Zhou, B.-Q.; Zhai, P.-M. Acta Meteorologica Sinica 2021, 79, 8. (in Chinese)
[3]
(周佰铨, 翟盘茂, 气象学报, 2021, 79, 8.)
[4]
Li, L.-R.; Liang, J.; Peng, J. Fine Chemical Industry 2023, 40, 553+696. (in Chinese)
[4]
(李亮荣, 梁娇, 彭建, 精细化工, 2023, 40, 553+696.)
[5]
An, P.; Zhang, Q.-H.; Yang, Z.; Wu, J.-X.; Zhang, J.-Y.; Wang, Y.-J.; Li, Y.-M.; Jiang, G.-Y. Acta Chim. Sinica 2022, 80, 1629. (in Chinese)
[5]
(安攀, 张庆慧, 杨状, 武佳星, 张佳颖, 王雅君, 李宇明, 姜桂元, 化学学报, 2022, 80, 1629.)
[6]
Xue, Q.-F.; Sun, C.; Hu, Z.-C.; Huang, F.; Ye, L.-X.; Cao, Y. Acta Chim. Sinica 2015, 73, 179. (in Chinese)
[6]
(薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛, 化学学报, 2015, 73, 179.)
[7]
Zhao, J.-X.; Wei, T.-H.; Ke, S.; Li, Y. Chin. J. Org. Chem. 2023, 43, 1102. (in Chinese)
[7]
(赵金晓, 魏彤辉, 柯森, 李毅, 有机化学, 2023, 43, 1102.)
[8]
Guo, X.-Y.; Song, Y.-Y.; Qin, C.; Wu, G.-J.; Bu, Y.-H.; Guo, S. L. Journal of China University of Petroleum (Edition of Natural Science) 2020, 44, 70. (in Chinese)
[8]
(郭辛阳, 宋雨媛, 秦川, 吴广军, 步玉环, 郭胜来, 中国石油大学学报(自然科学版), 2020, 44, 70.)
[9]
Zeng, X.-S.; Shan, C.-J.; Sun, M.-D.; Ding, D.-N.; Rong, S.-P. Chin. Chem. Lett. 2022, 33, 4771.
[10]
Ren, S.-R.; Li, D.-X.; Zhang, L.; Hang, H.-D. Acta Petrolei Sinica 2014, 35, 591. (in Chinese)
[10]
(任韶然, 李德祥, 张亮, 黄海东, 石油学报, 2014, 35, 591.)
[11]
Guo, X.-Y.; Wu, G.-J.; Bu, Y.-H.; Guo, S.-L.; Zhang, R.; Wang, C.-W. Journal of China University of Petroleum (Edition of Natural Science) 2022, 46, 72. (in Chinese)
[11]
(郭辛阳, 吴广军, 步玉环, 郭胜来, 张锐, 王成文, 中国石油大学学报(自然科学版), 2022, 46, 72.)
[12]
Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y. Joule 2018, 2, 1004.
[13]
Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
[14]
Ozer, M. S.; Eroglu, Z.; Yalin, A. S.; K?l??, M.; Rothlisberger, U.; Metin, O. Appl. Catal. B: Environmental 2022, 304, 120957.
[15]
Wang, C.; Zhang, H.; Luo, W.; Sun, T.; Xu, P. Angew. Chem. Int. Ed. 2021, 60, 25381.
[16]
Sun, X.; Zhang, X.; Xie, Y. Matter 2020, 2, 842.
[17]
Wu, J.-X.; Liu, Z.-F.; Peng, H.-L. Acta Chim. Sinica 2015, 73, 944. (in Chinese)
[17]
(吴金雄, 刘忠范, 彭海琳, 化学学报, 2015, 73, 944.)
[18]
Shi, J.-P.; Ma, D.-L.; Zhang, Y.-F.; Liu, Z.-F. Acta Chim. Sinica 2015, 73, 877. (in Chinese)
[18]
(史建平, 马冬林, 张艳锋, 刘忠范, 化学学报, 2015, 73, 877.)
[19]
Zhou, L.; Zhang, L.-M.; Liao, L.; Yang, M.-M.; Xie, Q.; Peng, H. -, L.; Liu, Z.-R.; Liu, Z.-F. Acta Chim. Sinica 2014, 72, 289. (in Chinese)
[19]
(周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72, 289.)
[20]
Huang, W.; Gan, L.; Yang, H.; Zhou, N.; Wang, R.; Wu, W.; Li, H.; Ma, Y.; Zeng, H.; Zhai, T. Adv. Funct. Mater. 2017, 27, 1702448.
[21]
Lu, A.; Zhu, H.; Xiao, J.; Chu, C.; Han, Y.; Chiu, M.; Cheng, C.; Yang, C.; Wei, K.; Yang, Y.; Wang, Y.; Sokaras, D.; Nordlund, D.; Yang, P.; Muller, D.; Chou, M.; Zhang, X.; Li, L. Nat. Nanotechnol. 2017, 12, 744.
[22]
Vu, T. V.; Hieu, N. N. J. Phys. Condens. Matter 2021, 34, 115601.
[23]
Hieu, N. N.; Phuc, H. V.; Kartamyshev, A. I.; Vu, T. V. Phys. Rev. B 2022, 105, 075402.
[24]
Fu, C. F.; Sun, J.; Luo, Q.; Li, X.; Hu, W.; Yang, J. Nano Lett. 2018, 18, 6312.
[25]
Yu, Z.; Pan, Y.; Shen, Y.; Wang, Z.; Ong, Z.; Xu, T.; Xin, R.; Pan, L.; Wang, B.; Sun, L.; Wang, J.; Zhang, G.; Zhang, Y.; Shi, Y.; Wang, X. Nat. Commun. 2014, 5, 5290.
[26]
Kresse, G.; Furthmüller, J. Phys. Rev. B, Condens. Matter 1996, 54, 11169.
[27]
Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
[28]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[29]
White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
[30]
Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.
[31]
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
[32]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
[33]
Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. J. Chem. Phys. 2019, 151, 234101.
[34]
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. J. Chem. Phys. 2014, 140, 084106.
[35]
Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.; Yakobson, B.; Idrobo, J. Nano Lett. 2013, 13, 2615.
[36]
Gajdo?, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Phys. Rev. B 2006, 73, 045112.
[37]
Fu, C.-F.; Wu, X.; Yang, J. Adv. Mater. 2018, 30, 1802106.
[38]
Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Phys. Chem. Chem. Phys. 2014, 16, 15917.
[39]
N?rskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886.
[40]
Xu, J.; Wan, Q.; Anpo, M.; Lin, S. J. Phys. Chem. C 2020, 124, 6624.
[41]
Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690.
[42]
Rossmeisl, J.; Chan, K.; Skulason, E.; Bj?rketun, M.; Tripkovic, V. Catal. Today 2016, 262, 36.
Outlines

/