Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study
Received date: 2023-05-06
Online published: 2023-06-28
Supported by
National Natural Science Foundation of China(21601054); Project funded by China Postdoctoral Science Foundation(2020M670935); Fundamental Research Funds for the Provincial Universities(2021-KYYWF0009); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202210212029); Training Program of Innovation and Entrepreneurship for Undergraduates of China(2022041); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202310212033)
Work function-adjustable borophene-based electrode materials are of significant importance for achieving the maximum energy conversion efficiency of electronic devices owing to their vital role in efficient transferring of carriers. Accordingly, understanding the regularity in the gradation of the work function for adatom-borophene nanocomposites with diverse adatoms will facilitate the design of such materials. Herein, the structural stabilities, electronic structures, and work functions of M-decorated experimentally available bilayer α-borophene (M/DBBP; M=Li~Cs; Be~Ba) are investigated systematically. The results obtained indicate that M/DBBP are all thermodynamically and kinetically stable. Moreover, M—B bond length, binding energy (Eb), electron transfer between M and DBBP, and work function (ϕ) are linearly dependent on the ionization potential (IP) in the same adatom family for these investigated systems. Furthermore, we report the two exceptional binding energies of Li/DBBP and Be/DBBP, which deviate from abovementioned IP dependence, owing to their extremely small adatoms and the resulting significantly enhanced effective M—B bonding areas. Impressively, the forming interlayer multi-centered B—B bonds lead to a significantly enhanced interlayer interaction of Ca/DBBP relative to other nine M/DBBP systems. In addition to interpreting that the metallic M/DBBP possesses ionic sp-p and dsp-p bonds for M1/DBBP (M1=Li, Na, Be, Mg, Sr, and Ba) and M2/DBBP (M2=K, Rb, Cs, and Ca), respectively, in particular, we confirm that the positive IP dependence of ϕ for alkali (earth) metal/DBBP originates from the synergistic effect of charge rearrangement and the increasing induced dipole moment. Our predictions not only provide guidance to the experimental efforts towards the realization of work function-adjustable borophene-based electrodes, which can be utilized as cathode materials in electronic devices, but also present a rational understanding of the bonding rules between varying alkali (earth) metal adatoms and bilayer α-borophene.
Key words: bilayer borophene; work function; adsorption; electronic structure; binding energy
Bing Zheng , Zhe Wang , Jing He , Jiao Zhang , Wenbo Qi , Mengyuan Zhang , Haitao Yu . Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study[J]. Acta Chimica Sinica, 2023 , 81(10) : 1357 -1370 . DOI: 10.6023/A23050210
| [1] | Zhang, Z.; Lin, P.; Liao, Q.; Kang, Z.; Si, H.; Zhang, Y. Adv. Mater. 2019, 31, 1806411. |
| [2] | Zhang, D.; Yuan, Z.; Zhang, G.; Tian, N.; Liu, D.; Zhang, Y. Acta Chim. Sinica 2018, 76, 537 (in Chinese). |
| [2] | (张丹丹, 袁振洲, 张国庆, 田楠, 刘丹敏, 张永哲, 化学学报, 2018, 76, 537.) |
| [3] | Chang, Z.-W.; Meng, F.-L.; Zhong, H.-X.; Zhang, X.-B. Chin. J. Chem. 2018, 36, 287 (in Chinese). |
| [3] | (常志伟, 孟樊露, 钟海霞, 张新博, 中国化学, 2018, 36, 287.) |
| [4] | Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488 (in Chinese). |
| [4] | (袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲, 化学学报, 2016, 74, 488.) |
| [5] | Han, Y.; Geng, Z.; Wang, Y.; Liang, J.; Yan, P. Acta Chim. Sinica 2009, 67, 773 (in Chinese). |
| [5] | (韩彦霞, 耿志远, 王永成, 梁俊玺, 闫盆吉, 化学学报, 2009, 67, 773.) |
| [6] | Zhang, L.; Gao, S.; Liu, W.; Tang, R.; Shang, N.; Wang, C.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 1542 (in Chinese). |
| [6] | (张丽, 高书涛, 刘伟华, 唐然肖, 商宁昭, 王春, 王志, 有机化学, 2014, 34, 1542.) |
| [7] | Seo, J.-T.; Bong, J.; Cha, J.; Lim, T.; Son, J.; Park, S. H.; Hwang, J.; Hong, S.; Ju, S. J. Appl. Phys. 2014, 116, 084312. |
| [8] | Kwon, K. C.; Choi, K. S.; Kim, S. Y. Adv. Funct. Mater. 2012, 22, 4724. |
| [9] | Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808 (in Chinese). |
| [9] | (贾涛, 郑楠楠, 蔡万清, 应磊, 黄飞, 化学学报, 2017, 75, 808.) |
| [10] | Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489 (in Chinese). |
| [10] | (张凯, 管星, 黄飞, 曹镛, 化学学报, 2012, 70, 2489.) |
| [11] | Wang, B.; Gunther, S.; Wintterlin, J.; Bocquet, M. L. New J. Phys. 2010, 12, 043041. |
| [12] | Shin, H.-J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S.-M.; Park, H.-K.; Kim, S.-W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H. J. Am. Chem. Soc. 2010, 132, 15603. |
| [13] | Bae, G.; Cha, J.; Lee, H.; Park, W.; Park, N. Carbon 2012, 50, 851. |
| [14] | Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Nat. Nanotechnol. 2008, 3, 210. |
| [15] | Wang, Y.; Tong, S. W.; Xu, X. F.; ?zyilmaz, B.; Loh, K. P. Adv. Mater. 2011, 23, 1514. |
| [16] | Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 235430. |
| [17] | Legesse, M.; Rashkeev, S. N.; Al-Dirini, F.; Alharbi, F. H. Appl. Surf. Sci. 2020, 509, 144893. |
| [18] | Legesse, M.; Mellouhi, F. E.; Bentria, E. T.; Madjet, M. E.; Fisher, T. S.; Kais, S.; Alharbi, F. H. Appl. Surf. Sci. 2017, 394, 98. |
| [19] | Sherpa, S. D.; Levitin, G.; Hess, D. W. Appl. Phys. Lett. 2012, 101, 111602. |
| [20] | Cho, H.; Dae Kim, S.; Han, T.-H.; Song, I.; Byun, J.-W.; Kim, Y.-H.; Kwon, S.; Bae, S.-H.; Cheul Choi, H.; Ahn, J.-H.; Lee, T.-W. 2D Mater. 2014, 2, 014002. |
| [21] | Hao, J.-H.; Wang, Z.-J.; Wang, Y.-F.; Yin, Y.-H.; Jiang, R.; Jin, Q.-H. Solid State Sci. 2015, 50, 69. |
| [22] | Taylor, P. D.; Osborne, D. A.; Tawfik, S. A.; Morishita, T.; Spencer, M. J. S. Phys. Chem. Chem. Phys. 2019, 21, 7165. |
| [23] | Wang, L.; Gao, J.; Ding, F. Acta Chim. Sinica 2014, 72, 3. |
| [23] | (王璐, 高俊峰, 丁峰, 物理化学学报, 2014, 72, 3.) |
| [24] | Xu, Z.; Li, Y.; Shi, P.; Wang, B.; Huang, X. Chin. J. Org. Chem. 2013, 33, 2162 (in Chinese). |
| [24] | (徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 2162.) |
| [25] | Wang, Q.; Xue, M.; Zhang, Z. Acta Phy.-Chim. Sinica 2019, 35, 565 (in Chinese). |
| [25] | (王琴, 薛珉敏, 张助华, 物理化学学报, 2019, 35, 565.) |
| [26] | Zheng, B.; He, J.; Wang, Z.; Xie, Y.; Qian, Y.-Y.; Zhang, J.; Tang, Y.-N.; Cui, L.-Y.; Wu, Y.-M.; Yang, L.; Yu, H.-T. Appl. Surf. Sci. 2023, 612, 155842. |
| [27] | Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W. Nanoscale 2018, 10, 1403. |
| [28] | Qian, Y.; Zheng, B.; Xie, Y.; He, J.; Chen, J.; Yang, L.; Lu, X.; Yu, H. Langmuir 2021, 37, 11027. |
| [29] | Zheng, B.; Yu, H.; Xie, Y.; Lian, Y. ACS Appl. Mater. Inter. 2014, 6, 19690. |
| [30] | Yi, T.; Zheng, B.; Yu, H.; Xie, Y. Chem. Res. Chin. Univ. 2017, 33, 631. |
| [31] | Zheng, B.; Xie, Y.; Deng, Y.; Wang, Z.; Lou, Y.; Qian, Y.; He, J.; Yu, H. Adv. Theory Simul. 2020, 3, 1900249. |
| [32] | Deng, Y.; Qian, Y.; Xie, Y.; Zhang, L.; Zheng, B.; Lou, Y.; Yu, H. Acta Chim. Sinica 2020, 78, 344 (in Chinese). |
| [32] | (邓颖怡, 钱银银, 谢颖, 张磊, 郑冰, 娄原青, 于海涛, 化学学报, 2020, 78, 344.) |
| [33] | Liu, X.; Li, Q.; Ruan, Q.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Nat. Mater. 2021, 21, 35. |
| [34] | Chen, C.; Lv, H.; Zhang, P.; Zhuo, Z.; Wang, Y.; Ma, C.; Li, W.; Wang, X.; Feng, B.; Cheng, P.; Wu, X.; Wu, K.; Chen, L. Nature Chemistry 2022, 14, 25. |
| [35] | Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Droese, C.; Dullmann, C. E.; Even, J.; Ferrer, R.; Giacoppo, F.; Gotz, S.; Hessberger, F. P.; Huyse, M.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschlager, F.; Lauth, W.; Lecesne, N.; Lens, L.; Minaya Ramirez, E.; Mistry, A. K.; Raeder, S.; Van Duppen, P.; Walther, T.; Yakushev, A.; Zhang, Z. Phys. Rev. Lett. 2018, 126, 263003. |
| [36] | Saidi, W. A. Cryst. Growth Des. 2015, 15, 3190. |
| [37] | Xu, S.-F.; Yuan, G.; Li, C.; Liu, W.-H.; Mimura, H. J. Phys. Chem. C 2011, 115, 8928. |
| [38] | Galeev, T. R.; Chen, Q.; Guo, J.; Bai, H.; Miao, C.; Lu, H.; Sergeeva, A. P.; Li, S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 11575. |
| [39] | Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. |
| [40] | Tkatchenko, A.; DiStasio, R. A., Jr.; Car, R.; Scheffler, M. Phys. Rev. Lett. 2012, 108, 236402. |
| [41] | Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. |
| [42] | Zhang, H.; Xu, Z. P.; Lu, G. Q.; Smith, S. C. J. Phys. Chem. C 2010, 114, 12618. |
| [43] | Egger, D. A.; Liu, Z.-F.; Neaton, J. B.; Kronik, L. Nano Lett. 2015, 15, 2448. |
| [44] | Zheng, B.; Yu, H. T.; Lian, Y. F.; Xie, Y. Chem. Phys. Lett. 2016, 648, 81. |
| [45] | He, J.; Zheng, B.; Xie, Y.; Qian, Y. Y.; Zhang, J.; Wang, K.; Yang, L.; Yu, H. T. Phys. Chem. Chem. Phys. 2022, 24, 8923. |
| [46] | Kaneti, Y. V.; Benu, D. P.; Xu, X.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Chem. Rev. 2022, 122, 1000. |
| [47] | Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501. |
| [48] | Banerjee, S.; Periyasamy, G.; Pati, S. K. J. Mater. Chem. A 2014, 2, 3856. |
| [49] | Khanifaev, J.; Pekoz, R.; Konuk, M.; Durgun, E. Phys. Chem. Chem. Phys. 2017, 19, 28963. |
| [50] | Zhang, H. ACS Nano 2015, 9, 9451. |
| [51] | Bezugly, V.; Kunstmann, J.; Grundko?tter-Stock, B.; Frauenheim, T.; Niehaus, T.; Cuniberti, G. ACS Nano 2011, 5, 4997. |
| [52] | Shan, B.; Cho, K. Phys. Rev. Lett. 2005, 94, 236602. |
| [53] | Liu, F.; Shen, C.; Su, Z.; Ding, X.; Deng, S.; Chen, J.; Xu, N.; Gao, H. J. Mater. Chem. 2010, 20, 2197. |
| [54] | Lin, H.; Shi, H.; Wang, Z.; Mu, Y.; Li, S.; Zhao, J.; Guo, J.; Yang, B.; Wu, Z.; Liu, F. ACS Nano 2021, 15, 17327. |
| [55] | Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Adv. Mater. 2019, 31, 1900353. |
| [56] | Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. ACS Nano 2018, 12, 1262. |
| [57] | Chahal, S.; Ranjan, P.; Motlag, M.; Yamijala, S. S. R. K. C.; Late, D. J.; Sadki, E. H. S.; Cheng, G. J.; Kumar, P. Adv. Mater. 2021, 33, 2102039. |
| [58] | Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. ACS Nano 2012, 6, 7443. |
| [59] | Huang, J. H.; Fang, J. H.; Liu, C. C.; Chu, C. W. ACS Nano 2011, 5, 6262. |
/
| 〈 |
|
〉 |