Account

Research Progress in the Application of Spinel Oxides in Tumor Therapy

  • Yuan Zhang ,
  • Beining Zheng ,
  • Meichun Fu ,
  • Shouhua Feng
Expand
  • a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012
    b College of Physics, Jilin University, Changchun 130012
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-30

  Online published: 2023-07-04

Supported by

National Natural Science Foundation of China(21831003); National Natural Science Foundation of China(91959201)

Abstract

The spinel oxides have various elements, flexible cations, variable valence states and rich electronic structure, which bring about rich physical and chemical properties. In recent years, as important inorganic nano therapeutic agents in tumor, they had shown excellent potential in the field of tumor labeling, diagnosis and treatment. The ratio of A-O tetrahedron to B-O octahedron is fixed in the structure composition of spinel oxide AB2O4, and the occupancy ratio of eg orbital calculated by d orbital splitting in B-O octahedron can be used as a descriptor of various catalytic reactions. Therefore, it shows a unique advantage in establishing the structure-activity relationship between the electronic state structure of spinel oxides and the diagnostic and therapeutic performance in the treatment of various tumors.

Cite this article

Yuan Zhang , Beining Zheng , Meichun Fu , Shouhua Feng . Research Progress in the Application of Spinel Oxides in Tumor Therapy[J]. Acta Chimica Sinica, 2023 , 81(8) : 949 -954 . DOI: 10.6023/A23040189

References

[1]
Zottel A.; Videti? P. A.; Jov?evska I. Materials 2019, 12, 1588.
[2]
Das D.; Biswas R.; Ghosh S. J. Phys. Condens. Mat. 2016, 28, 446001.
[3]
Zhou Y.; Liu B.; Yang R.; Liu J. Bioconjugate Chem. 2017, 28, 2903.
[4]
Huang L.; Chen K.; Zhang W.; Zhu W.; Liu X.; Wang J.; Wang J. Sensor. Actuat. B-Chem. 2018, 269, 79.
[5]
Yang G.; Lu Y.; Li Y.; Ying M.; Pan H.; Qi J.; Du M. J. Mater. Chem. B 2021, 9, 4663.
[6]
Guo X.; Wang K.; Li D.; Qin J. Appl. Surf. Sci. 2017, 420, 792.
[7]
Feng W.; Han X.; Wang R.; Gao X.; Hu P.; Yue W.; Shi J. Adv. Mater. 2019, 31, 1805919.
[8]
Fan L.; Xu X.; Zhu C.; Han J.; Gao L.; Xi J.; Guo R. ACS Appl. Mater. Interfaces 2018, 10, 4502.
[9]
Li S.; Shang L.; Xu B.; Wang S.; Gu K.; Wu Q.; Liu H. Angew. Chem. Int. Ed. 2019, 58, 12624.
[10]
Liang Y.; Liu Y.; Lei P.; Zhang Z.; Zhang H. Nano Research 2023, 1.
[11]
Zhou Z.; Song J.; Tian R.; Yang Z.; Yu G.; Lin L.; Chen X. Angew. Chem. Int. Ed. 2017, 56, 6492.
[12]
Zamani M.; Aghajanzadeh M.; Jashnani S.; Darvishzad S.; Khoramabadi H.; Shahangian S. S.; Shirini F. J. Mol. Liq. 2022, 358, 119211.
[13]
Zamani M.; Aghajanzadeh M.; Jashnani S.; Shahangian S. S.; Shirini F. Int. J. Biol. Macromol. 2022, 219, 709.
[14]
Kim J.; Cho H. R.; Jeon H.; Kim D.; Song C.; Lee N.; Choi S. H.; Hyeon, J. Am. Chem. Soc. 2017, 139, 10992.
[15]
Ren X.; Han Y.; Xu Y.; Liu T.; Cui M.; Xia L.; Wang P. Coord. Chem. Rev. 2021, 431, 213676.
[16]
Yin S. Y.; Song G.; Yang Y.; Zhao Y.; Wang P.; Zhu L. M.; Zhang X. B. Adv. Funct. Mater. 2019, 29, 1901417.
[17]
Liu Y.; Zhen W.; Jin L.; Zhang S.; Sun G.; Zhang T.; Zhang H. ACS Nano 2018, 12, 4886.
[18]
Zou Q.; Abbas M.; Zhao L.; Li S.; Shen G.; Yan X. J. Am. Chem. Soc. 2017, 139, 1921.
[19]
Wang X.; Liu H.; Chen D.; Meng X.; Liu T.; Fu C.; Tang F. ACS Appl. Mater. Interfaces 2013, 5, 4966.
[20]
Zhang X.; Xu X.; Li T.; Lin M.; Lin X.; Zhang H.; Yang B. ACS Appl. Mater. Interfaces 2014, 6, 14552.
[21]
Fu S.; Man Y.; Jia F. J. Nanomater. 2020, 2020, 2832347.
[22]
Zhou B.; Wu Q.; Wang M.; Hoover A.; Wang X.; Zhou F.; Chen W. R. Chem. Eng. J. 2020, 396, 125239.
[23]
Zanganeh S.; Hutter G.; Spitler R.; Lenkov O.; Mahmoudi M.; Shaw A.; Daldrup-Link H. E. Nature Nanotech. 2016, 11, 986.
[24]
Daldrup-Link H. E.; Golovko D.; Ruffell B.; DeNardo D. G.; Castaneda R.; Ansari C.; Coussens L. M. Clin. Cancer Res. 2011, 17, 5695.
[25]
Huang X.; Cai H.; Zhou H.; Li T.; Jin H.; Evans C. E.; Pi J. Acta Biomater. 2021, 121, 605.
[26]
Wang W.; Hao C.; Sun M.; Xu L.; Xu C.; Kuang H. Adv. Funct. Mater. 2018, 28, 1800310.
[27]
Liu F.; Laurent S.; Roch A.; Elst L. V.; Muller R. N. J. Nanomater. 2013, 127.
[28]
Kang J.; Lee H.; Kim Y. N.; Yeom A.; Jeong H.; Lim Y. T.; Hong K. S. Nanoscale Res. Lett. 2013, 8, 1.
[29]
Liu X. L.; Wang Y. T.; Ng C. T.; Wang R.; Jing G. Y.; Yi J. B.; Fan H. M. Adv. Mater. Interfaces 2014, 1, 1300069.
[30]
Banerjee A.; Blasiak B.; Pasquier E.; Tomanek B.; Trudel S. RSC Adv. 2017, 7, 38125.
[31]
Zhang H.; Li L.; Liu X. L.; Jiao J.; Ng C. T.; Yi J. B.; Fan H. M. ACS Nano 2017, 11, 3614.
[32]
Liu Y.; Guo Q.; Zhu X.; Feng W.; Wang L.; Ma L.; Li F. Adv. Funct. Mater. 2016, 26, 5120.
[33]
Wang H.; Mu Q.; Revia R.; Wang K.; Tian B.; Lin G.; Lee W.; Hong Y. K.; Zhang M. J. Controlled Release 2018, 289, 70.
[34]
Du Y.; Wang D.; Wang S.; Li W.; Suo J. RSC Adv. 2021, 11, 6472.
[35]
Noh S. H.; Moon S. H.; Shin T. H.; Lim Y.; Cheon J. Nano Today 2017, 13, 61.
[36]
Yan H.; Shang W.; Sun X.; Zhao L.; Wang J.; Xiong Z.; Feng S. S. Adv. Funct. Mater. 2018, 28, 1705710.
[37]
Ma X.; Wang Y.; Liu X. L.; Ma H.; Li G.; Li Y.; Liang X. J. Nanoscale Horiz. 2019, 4, 1450.
[38]
Shen J. C.; Rees T. W.; Zhou Z. G.; Yang S. P.; Ji L. N.; Chao H.; Biomaterials 2020, 251, 120079.
[39]
Tian Q.; Hu J.; Zhu Y.; Zou R.; Chen Z.; Yang S.; Liu X. J. Am. Chem. Soc. 2013, 135, 8571.
[40]
Feng L.; Liu B.; Xie R.; Wang D.; Qian C.; Zhou W.; Zhao Y. Adv. Funct. Mater. 2021, 31, 2006216.
[41]
Wu H.; Liu L.; Song L.; Ma M.; Gu N.; Zhang Y. ACS Nano 2019, 13, 14013.
[42]
Chu X.; Zhang L.; Li Y.; He Y.; Zhang Y.; Du C. Small 2023, 19, 2205414.
[43]
Wang Q.; Li C.; Wang X.; Pu J.; Zhang S.; Liang L.; Wei H. Nano Lett. 2022, 24, 10003.
Outlines

/