In-situ Etching Strategy for Manipulation of Hierarchical Zeolite and Its Application★
Received date: 2023-04-28
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(21972006); Shenzhen Science and Technology Program(JCYJ20200109140421071); Shenzhen Science and Technology Program(JSGG20211029095546003)
Zeolite molecular sieve is by far the most widely used porous material with the greatest contribution to society. Hierarchical zeolites, which possess dual advantages of large diffusion coefficient and high activity, are increasingly important as catalysts and adsorbents in many chemical processes. A class of organic mesoporogens named organic mesopore generating agents (OMeGAs), such as amino acids, phenols, and azoles were found to produce intracrystalline mesopores by one pot method, wherein the nucleophilic etching effect of the in-situ generated anions, including oxyanions, nitranions, or carbanions, plays the key role. By adding mild OMeGAs in-situ into the reaction solution of zeolite synthesis, the nucleophilic etching assisted growth could overcome the energy-intensive mesoscale template calcination associated with the “bottom-up” strategy and the zeolite structure destruction of the “top-down” post-synthetic strategy. The interplay between in-situ etching and growth on the early precursor or nuclei has enabled effective control over crystallinity, size, morphology, mesopores, and performance of zeolites. In this account, the existing preparation strategies of hierarchical zeolite are first briefly introduced. Then, the in-situ etching-assisted growth strategies are discussed in detail, including the selection of mild etchant OMeGAs, mechanism and advantages of the etching-assisted zeolite crystallization process. Finally, the application of in-situ etching-manipulated hierarchical zeolite is summarized.
Mei Hong , Jinqiang Gao , Tong Li , Shihe Yang . In-situ Etching Strategy for Manipulation of Hierarchical Zeolite and Its Application★[J]. Acta Chimica Sinica, 2023 , 81(8) : 937 -948 . DOI: 10.6023/A23040177
[1] | (a) Li Y.; Cao H.; Yu J. ACS Nano 2018, 12, 4096. |
[1] | (b) Slater A. G.; Cooper A. I. Science 2015, 348, aaa8075. |
[2] | Chen L.-H.; Sun M.-H.; Wang Z.; Yang W.; Xie Z.; Su B.-L. Chem. Rev. 2020, 120, 11194. |
[3] | (a) Sun M.-H.; Huang S.-Z.; Chen L.-H.; Li Y.; Yang X.-Y.; Yuan Z.-Y.; Su B.-L. Chem. Soc. Rev. 2016, 45, 3479. |
[3] | (b) Wang R.-S.; Peng P.; Li T.-T.; Du N.-N.; Wang Y.-H.; Yan Z.-F. Chemical Industry and Engineering Progress 2021, 40, 1849. (in Chinese) |
[3] | ( 王日升, 彭鹏, 李婷婷, 杜宁宁, 王有和, 阎子峰, 化工进展, 2021, 40, 1849.) |
[4] | Kerstens D.; Smeyers B.; Van Waeyenberg J.; Zhang Q.; Yu J.; Sels B. F. Adv. Mater. 2020, 32, 2004690. |
[5] | Li K. H.; Valla J.; Garcia-Martinez J. ChemCatChem 2014, 6, 46. |
[6] | Tian Y.; Li Y.-D. Journal of Chemical Industry and Engineering, 2013, 64, 393. (in Chinese) |
[6] | ( 田野, 李永丹, 化工学报, 2013, 64, 393.) |
[7] | Prasomsri T.; Jiao W.; Weng S. Z.; Garcia Martinez J. Chem. Commun. 2015, 51, 8900. |
[8] | Wei Y.; Parmentier T. E.; de Jong K. P.; Zecevic J. Chem. Soc. Rev. 2015, 44, 7234. |
[9] | Jacobsen C. J. H.; Madsen C.; Houzvicka J.; Schmidt I.; Carlsson A. J. Am. Chem. Soc. 2000, 122, 7116. |
[10] | Schmidt I.; Boisen A.; Gustavsson E.; Stahl K.; Pehrson S.; Dahl S.; Carlsson A.; Jacobsen C. J. H. Chem. Mater. 2001, 13, 4416. |
[11] | Janssen A. H.; Schmidt I.; Jacobsen C. J. H.; Koster A. J.; de Jong K. P. Micropor. Mesopor. Mater. 2003, 65, 59. |
[12] | Tao Y. S.; Kanoh H.; Kaneko K. J. Am. Chem. Soc. 2003, 125, 6044. |
[13] | Yang Z. X.; Xia Y. D.; Mokaya R. Adv. Mater. 2004, 16, 727. |
[14] | Li D.; Qiu L.; Wang K.; Zeng Y.; Li D.; Williams T.; Huang Y.; Tsapatsis M.; Wang H. Chem. Commun. 2012, 48, 2249. |
[15] | White R. J.; Fischer A.; Goebel C.; Thomas A. J. Am. Chem. Soc. 2014, 136, 2715. |
[16] | Wang H.; Du G.; Jia J.; Chen S.; Su Z.; Chen R.; Chen T. Front. Chem. Sci. Eng. 2021, 15, 1444. |
[17] | Li X.; Sun J.; Shao S.; Yan J.; Cai Y. Renew. Energy 2023, 206, 506. |
[18] | Tao Y. S.; Kanoh H.; Kaneko K. Langmuir 2005, 21, 504. |
[19] | Holland B. T.; Abrams L.; Stein A. J. Am. Chem. Soc. 1999, 121, 4308. |
[20] | Tosheva L.; Valtchev V.; Sterte J. Micropor. Mesopor. Mater. 2000, 35-36, 621. |
[21] | Lee Y. J.; Lee J. S.; Park Y. S.; Yoon K. B. Adv. Mater. 2001, 13, 1259. |
[22] | Li W. C.; Lu A. H.; Palkovits R.; Schmidt W.; Spliethoff B.; Schuth F. J. Am. Chem. Soc. 2005, 127, 12595. |
[23] | Wang H.; Pinnavaia T. J. Angew. Chem. Int. Ed. 2006, 45, 7603. |
[24] | Xiao F. S.; Wang L. F.; Yin C. Y.; Lin K. F.; Di Y.; Li J. X.; Xu R. R.; Su D. S.; Schlogl R.; Yokoi T.; Tatsumi T. Angew. Chem. Int. Ed. 2006, 45, 3090. |
[25] | Rhodes K. H.; Davis S. A.; Caruso F.; Zhang B. J.; Mann S. Chem. Mater. 2000, 12, 2832. |
[26] | Sachse A.; García-Martínez J. Chem. Mater. 2017, 29, 3827. |
[27] | Kresge C. T.; Leonowicz M. E.; Roth W. J.; Vartuli J. C.; Beck J. S. Nature 1992, 359, 710. |
[28] | Huang L. M.; Guo W. P.; Deng P.; Xue Z. Y.; Li Q. Z. J. Phys. Chem. B 2000, 104, 2817. |
[29] | Naik S. P.; Chiang A. S. T.; Thompson R. W.; Huang F. C.; Kao H.-M. Micropor. Mesopor. Mater. 2003, 60, 213. |
[30] | Choi M.; Cho H. S.; Srivastava R.; Venkatesan C.; Choi D. H.; Ryoo R. Nat. Mater. 2006, 5, 718. |
[31] | Na K.; Jo C.; Kim J.; Cho K.; Jung J.; Seo Y.; Messinger R. J.; Chmelka B. F.; Ryoo R. Science 2011, 333, 328. |
[32] | Mendoza-Castro M. J.; Serrano E.; Linares N.; García-Martínez J. Adv. Mater. Interfaces 2021, 8, 2001388. |
[33] | del Mar Alonso-Doncel M.; Ochoa-Hernández C.; Gómez-Pozuelo G.; Oliveira A.; González-Aguilar J.; Peral á.; Sanz R.; Serrano D. P. J. Energy Chem. 2023, 80, 77. |
[34] | Zhu J.; Zhu Y. H.; Zhu L. K.; Rigutto M.; van der Made A.; Yang C. G.; Pan S. X.; Wang L.; Zhu L. F.; Jin Y. Y.; Sun Q.; Wu Q. M.; Meng X. J.; Zhang D. L.; Han Y.; Li J. X.; Chu Y. Y.; Zheng A. M.; Qiu S. L.; Zheng X. M.; Xiao F. S. J. Am. Chem. Soc. 2014, 136, 2503. |
[35] | Valtchev V.; Majano G.; Mintova S.; Perez-Ramirez J. Chem. Soc. Rev. 2013, 42, 263. |
[36] | Peron D. V.; Zholobenko V. L.; de Melo J. H. S.; Capron M.; Nuns N.; de Souza M. O.; Feris L. A.; Marcilio N. R.; Ordomsky V. V.; Khodakov A. Y. Micropor. Mesopor. Mater. 2019, 286, 57. |
[37] | Barrer R. M.; Makki M. B. Can. J. Chem. 1964, 42, 1481. |
[38] | Valtchev V.; Mintova S. MRS Bull. 2016, 41, 689. |
[39] | Chal R.; Gerardin C.; Bulut M.; van Donk S. ChemCatChem 2011, 3, 67. |
[40] | Verboekend D.; Nuttens N.; Locus R.; Van Aelst J.; Verolme P.; Groen J. C.; Perez-Ramirez J.; Sels B. F. Chem. Soc. Rev. 2016, 45, 3331. |
[41] | van Donk S.; Janssen A. H.; Bitter J. H.; de Jong K. P. Catal. Rev. 2003, 45, 297. |
[42] | Agostini G.; Lamberti C.; Palin L.; Milanesio M.; Danilina N.; Xu B.; Janousch M.; van Bokhoven J. A. J. Am. Chem. Soc. 2010, 132, 667. |
[43] | Hua Z. L.; Zhou J.; Shi J. L. Chem. Commun. 2011, 47, 10536. |
[44] | Groen J. C.; Jansen J. C.; Moulijn J. A.; Perez-Ramirez J. J. Phys. Chem. B 2004, 108, 13062. |
[45] | Verboekend D.; Perez-Ramirez J. Catal. Sci. Technol. 2011, 1, 879. |
[46] | Garcia-Martinez J.; Li K.; Krishnaiah G. Chem. Commun. 2012, 48, 11841. |
[47] | Yang G.; Qiu Z.; Han J.; Chen X.; Yu J. Mater. Chem. Front. 2020, 4, 2982. |
[48] | Bozhilov K. N.; Le T. T.; Qin Z.; Terlier T.; Pal?i? A.; Rimer J. D.; Valtchev V. Sci. Adv. 2021, 7, eabg0454. |
[49] | Kencana K. S.; Choi H. J.; Kemp K. C.; Hong S. B. Chem. Eng. J. 2023, 451, 138520. |
[50] | Zheng Y.; Zeng J.; Ruditskiy A.; Liu M.; Xia Y. Chem. Mater. 2014, 26, 22. |
[51] | Lin L.; Chen M.; Qin H.; Peng X. J. Am. Chem. Soc. 2018, 140, 17734. |
[52] | Xi D. Y.; Sun Q. M.; Xu J.; Cho M.; Cho H. S.; Asahina S.; Li Y.; Deng F.; Terasaki O.; Yu J. H. J. Mater. Chem. A 2014, 2, 17994. |
[53] | Ge T.; Hua Z.; He X.; Zhu Y.; Ren W.; Chen L.; Zhang L.; Chen H.; Lin C.; Yao H.; Shi J. Chinese J. Catal. 2015, 36, 866. |
[54] | Chen C.; Zhai D.; Dong L.; Wang Y.; Zhang J.; Liu Y.; Chen Z.; Wang Y.; Qian W.; Hong M. Chem. Mater. 2019, 31, 1528. |
[55] | Zhang J.; Chen Z.; Wang Y.; Zheng G.; Zheng H.; Cai F.; Hong M. Micropor. Mesopor. Mater. 2017, 252, 79. |
[56] | Zhang J.; Bai S.; Chen Z.; Wang Y.; Dong L.; Zheng H.; Cai F.; Hong M. J. Mater. Chem. A 2017, 5, 20757. |
[57] | Dong L.; Hong M.; Wang Y.; Wang Y.; Miao K.; Gao J.; Jia Q.; Yang S. Adv. Mater. Interfaces 2021, 8, 2101573. |
[58] | Wang Y.; Gao J.; Dong L.; Wang Y.; Hong M.; Yang S. Micropor. Mesopor. Mater. 2021, 310, 110590. |
[59] | Zhao J.; Dong L.; Wang Y.; Zhang J.; Zhu R.; Li C.; Hong M. Nanoscale 2022, 14, 5915. |
[60] | Chen Z.; Zhang J.; Yu B.; Zheng G.; Zhao J.; Hong M. J. Mater. Chem. A 2016, 4, 2305. |
[61] | Chen Y.; Dong L.; Li S.; Gao J.; Liu X.; Yuan H.; Zhu R.; Hong M.; Yang S. Appl. Surf. Sci. 2023, 625, 157172. |
[62] | Wang C.; Zhang L.; Huang X.; Zhu Y.; Li G.; Gu Q.; Chen J.; Ma L.; Li X.; He Q.; Xu J.; Sun Q.; Song C.; Peng M.; Sun J.; Ma D. Nat. Commun. 2019, 10, 4348. |
[63] | Dong L.; Zhai D.; Chen Z.; Zheng G.; Wang Y.; Hong M.; Yang S. Chem. Commun. 2020, 56, 14693. |
[64] | Lupulescu A. I.; Rimer J. D. Science 2014, 344, 729. |
[65] | (a) Huang Z.; Li S.; Xu B.; Yan F.; Yuan G.; Liu H. Small 2020, 2006624. |
[65] | (b) Wu J.; Gao W.; Yang H.; Zuo J.-M. ACS Nano 2017, 11, 1696. |
[65] | (c) Dong G.-X.; Jin C.-H. Acta Physico-Chimica Sinica 2019, 35, 15. (in Chinese) |
[65] | ( 董干兴, 金传洪, 物理化学学报, 2019, 35, 15.) |
[66] | Bu?ar D.-K.; Lancaster R. W.; Bernstein J. Angew. Chem. Int. Ed. 2015, 54, 6972. |
[67] | Marui Y.; Matsuoka M. J. Chem. Eng. Japan 2004, 37, 685. |
[68] | Valtchev V. P.; Bozhilov K. N. J. Phys. Chem. B 2004, 108, 15587. |
[69] | Chen Z.; Chen C.; Zhang J.; Zheng G.; Wang Y.; Dong L.; Qian W.; Bai S.; Hong M. J. Mater. Chem. A 2018, 6, 6273. |
[70] | Hong M.; Yu L.; Wang Y.; Zhang J.; Chen Z.; Dong L.; Zan Q.; Li R. Chem. Eng. J. 2019, 359, 363. |
[71] | Hong M.; Dong L.; Yang S. ChemNanoMat 2019, 5, 869. |
[72] | Rimer J. D. Nat. Catal. 2018, 1, 488. |
[73] | Olafson K. N.; Li R.; Alamani B. G.; Rimer J. D. Chem. Mater. 2016, 28, 8453. |
[74] | Farmanesh S.; Chung J.; Sosa R. D.; Kwak J. H.; Karande P.; Rimer J. D. J. Am. Chem. Soc. 2014, 136, 12648. |
/
〈 |
|
〉 |