Review

Surface Atom Rearrangement and Electron Delocalization of the Sub-nanometric Materials

  • Dongzheng Zhang ,
  • Qingda Liu ,
  • Xun Wang
Expand
  • Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-08

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(2224100031)

Abstract

Subnanometer scale is an important feature size in the field of material science. Sub-nanometric materials (SNMs) have several unique properties different from molecular-based or traditional nanomaterials, and their size is comparable to the diameters of the polymer single strand/DNA, clusters and the single unit cell of inorganic crystals. The surface atom ratio of SNMs is close to 100%, which brings significant surface atom rearrangement and electron delocalization effects. 1D SNMs are expected to become an entry point to break the boundary between polymers and inorganic materials due to their excellent structural flexibility, machinability, viscosity and gelation. Electron delocalization in SNMs changes the electronic and band structures of the materials, and significantly enhances the external field coupling effects, resulting in excellent photothermal conversion and catalysis properties. This review focuses on the surface atom rearrangement and electron delocalization effects at the subnanometer scale. The precise synthesis and assembly, polymer-like properties, electronic structure, and catalytic properties of SNMs are introduced. It is hoped that this review can help to deeply understand the coupling law of subnanometer scale interactions and structure-function relationship, further promoting the accurate synthesis of SNMs and the construction of functional systems.

Cite this article

Dongzheng Zhang , Qingda Liu , Xun Wang . Surface Atom Rearrangement and Electron Delocalization of the Sub-nanometric Materials[J]. Acta Chimica Sinica, 2023 , 81(10) : 1462 -1470 . DOI: 10.6023/A23050214

References

[1]
Zhang, S.; Wang, X. ACS Mater. Lett. 2020, 2, 639.
[2]
Li, X.; Lu, Z.; Wang, T. Nano Res. 2021, 14, 1233.
[3]
Adhikari, S.; Lem, O. L. C.; Kremer, F.; Vora, K.; Brink, F.; Lysevych, M.; Tan, H. H.; Jagadish, C. Nano Res. 2022, 15, 7670.
[4]
Liu, H.; Siron, M.; Gao, M.; Lu, D.; Bekenstein, Y.; Zhang, D.; Dou, L.; Alivisatos, A. P.; Yang, P. Nano Res. 2020, 13, 1453.
[5]
Mou, S.; Li, Y.; Yue, L.; Liang, J.; Luo, Y.; Liu, Q.; Li, T.; Lu, S.; Asiri, A. M.; Xiong, X.; Ma, D.; Sun, X. Nano Res. 2021, 14, 2831.
[6]
Azimi, Z.; Gopakumar, A.; Ameruddin, A. S.; Li, L.; Truong, T.; Nguyen, H. T.; Tan, H. H.; Jagadish, C.; Wong-Leung, J. Nano Res. 2022, 15, 3695.
[7]
Dai, B.; Wu, C.; Xie, Y. Sci. China: Chem. 2021, 64, 745.
[8]
Chen, Y. Sci. China: Chem. 2022, 65, 1455.
[9]
Wang, Z.; Chen, L.; Wang, D.; Ding, Z.; Zhang, X.; Feng, X.; Jiang, L. CCS Chem. 2022, 4, 1044.
[10]
Gülseren, O.; Ercolessi, F.; Tosatti, E. Phys. Rev. Lett. 1998, 80, 3775.
[11]
Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Science 2004, 303, 1348.
[12]
Gao, P. X.; Ding, Y.; Mai, W. J.; Hughes, W. L.; Lao, C. S.; Wang, Z. L. Science 2005, 309, 1700.
[13]
Cademartiri, L.; Guerin, G.; Bishop, K. J. M.; Winnik, M. A.; Ozin, G. A. J. Am. Chem. Soc. 2012, 134, 9327.
[14]
Cademartiri, L.; Ozin, G. A. Adv. Mater. 2009, 21, 1013.
[15]
Hu, S.; Liu, H.; Wang, P.; Wang, X. J. Am. Chem. Soc. 2013, 135, 11115.
[16]
Zhang, S.; Shi, W.; Wang, X. Science 2022, 377, 100.
[17]
Wang, P.-P.; Yang, Y.; Zhuang, J.; Wang, X. J. Am. Chem. Soc. 2013, 135, 6834.
[18]
Liu, Q.; He, P.; Yu, H.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Sci. Adv. 2019, 5, eaa1081.
[19]
Zhang, S.; Shi, W.; Rong, S.; Li, S.; Zhuang, J.; Wang, X. J. Am. Chem. Soc. 2020, 142, 1375
[20]
Zhang, S.; Shi, W.; Yu, B.; Wang, X. J. Am. Chem. Soc. 2022, 144, 16389.
[21]
He, P.; Xu, B.; Liu, H.; He, S.; Saleem, F.; Wang, X. Sci. Rep. 2013, 3, 1833.
[22]
Zhang, S.; Lu, Q.; Yu, B.; Cheng, X.; Zhuang, J.; Wang, X. Adv. Funct. Mater. 2021, 31, 2100703.
[23]
Liu, H.; Gong, Q.; Yue, Y.; Guo, L.; Wang, X. J. Am. Chem. Soc. 2017, 139, 8579.
[24]
Zhang, S.; Shi, W.; Siegler, T. D.; Gao, X.; Ge, F.; Korgel, B. A.; He, Y.; Li, S.; Wang, X. Angew. Chem., nt. Ed. 2019, 58, 8730.
[25]
Yuan, F.; Ouyang, C.; Yang, M.; Shi, W.; Ren, W.; Shen, Y.; Wei, Y.; Deng, X.; Wang, X. Angew. Chem., nt. Ed. 2022, 62, e202214571.
[26]
Zhang, S.; Shi, H.; Tang, J.; Shi, W.; Wu, Z.-S.; Wang, X. Sci. China-Mater. 2021, 64, 2949.
[27]
Novo, C.; Funston, A. M.; Mulvaney, P. Nat. Nanotechnol. 2008, 3, 598.
[28]
Zou, N.; Zhou, X.; Chen, G.; Andoy, N. M.; Jung, W.; Liu, G.; Chen, P. Nat. Chem. 2018, 10, 607.
[29]
Huang, Z.; Liang, J.-X.; Tang, D.; Chen, Y.; Qu, W.; Hu, X.; Chen, J.; Dong, Y.; Xu, D.; Golberg, D.; Li, J.; Tang, X. Chem 2022, 8, 3008.
[30]
Liu, Q.; Zhang, Q.; Shi, W.; Hu, H.; Zhuang, J.; Wang, X. Nat. Chem. 2022, 14, 433.
[31]
Duncan, D. C.; Chambers, R. C.; Hecht, E.; Hill, C. L. J. Am. Chem. Soc. 1995, 117, 681.
[32]
Li, Z.; Zhang, Z.; Hu, H.; Liu, Q.; Wang, X. Nat. Synth. 2023. https://doi.org/10.1038/s44160-023-00305-7.
[33]
Shishido, T.; Miyatake, T.; Teramura, K.; Hitomi, Y.; Yamashita, H.; Tanaka, T. J. Phys. Chem. C 2009, 113, 18713.
[34]
Zhang, H.; Wu, Q.; Guo, C.; Wu, Y.; Wu, T. ACS Sustainable Chem. Eng. 2017, 5, 3517.
[35]
Meirzadeh, E.; Evans, A. M.; Rezaee, M.; Milich, M.; Dionne, C. J.; Darlington, T. P.; Bao, S. T.; Bartholomew, A. K.; Handa, T.; Rizzo, D. J.; Wiscons, R. A.; Reza, M.; Zangiabadi, A.; Fardian-Melamed, N.; Crowther, A. C.; Schuck, P. J.; Basov, D. N.; Zhu, X.; Giri, A.; Hopkins, P. E.; Kim, P.; Steigerwald, M. L.; Yang, J.; Nuckolls, C.; Roy, X. Nature 2023, 613, 71.
[36]
Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Nature 2022, 606, 507.
[37]
Pan, F.; Ni, K.; Xu, T.; Chen, H.; Wang, Y.; Gong, K.; Liu, C.; Li, X.; Lin, M.-L.; Li, S.; Wang, X.; Yan, W.; Yin, W.; Tan, P.-H.; Sun, L.; Yu, D.; Ruoff, R. S. S.; Zhu, Y. Nature 2023, 614, 95.
[38]
Liu, J.; Shi, W.; Wang, X. J. Am. Chem. Soc. 2021, 143, 16217.
[39]
Zhang, S.; Liu, N.; Wang, H.; Lu, Q.; Shi, W.; Wang, X. Adv. Mater. 2021, 33, 2100576.
[40]
Yang, D.; Zuo, S.; Yang, H.; Zhou, Y.; Lu, Q.; Wang, X. Adv. Mater. 2022, 34, 2107293.
[41]
Yang, H.; Yang, D.; Zhou, Y.; Wang, X. J. Am. Chem. Soc. 2021, 143, 13721.
[42]
Liu, J.; Wang, S.; Liu, N.; Yang, D.; Wang, H.; Hu, H.; Zhuang, J.; Wang, X. Small 2021, 17, 2006260.
[43]
Liu, J.; Shi, W.; Wang, X. J. Am. Chem. Soc. 2019, 141, 18754.
[44]
Zhang, J.; Liu, X.; Ji, Y.; Liu, X.; Su, D.; Zhuang, Z.; Chang, Y.-C.; Pao, C.-W.; Shao, Q.; Hu, Z.; Huang, X. Nat. Commun. 2023, 14, 1761.
[45]
Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2020, 6, 431.
[46]
Zhan, C.; Xu, Y.; Bu, L.; Zhu, H.; Feng, Y.; Yang, T.; Zhang, Y.; Yang, Z.; Huang, B.; Shao, Q.; Huang, X. Nat. Commun. 2021, 12, 6261.
[47]
Li, M.; Zhao, Z.; Zhang, W.; Luo, M.; Tao, L.; Sun, Y.; Xia, Z.; Chao, Y.; Yin, K.; Zhang, Q.; Gu, L.; Yang, W.; Yu, Y.; Lu, G.; Guo, S. Adv. Mater. 2021, 33, 2103762.
[48]
Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. J. Am. Chem. Soc. 2022, 144, 10582.
Outlines

/