Original article

Asymmetric Synthesis of C1-Symmetric Chiral N-Heterocyclic Carbene (NHC) Ligands and Their Applications in Asymmetric Catalysis

  • Qingduan Meng ,
  • Jiahong Han ,
  • Yixiao Pan ,
  • Wei Hao ,
  • Qing-Hua Fan
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    b University of Chinese Academy of Sciences, Beijing 100049
Dedicated to the 90th anniversary of Acta Chimica Sinica.
These authors contributed equally to this work

Received date: 2023-06-02

  Online published: 2023-07-11

Supported by

National Key R&D Program of China(2021YFA1500200); National Natural Science Foundation of China(92056108); National Natural Science Foundation of China(92256303)

Abstract

A class of C1-symmetric chiral N-heterocyclic carbene (NHC) ligands, incorporating both chiral fused-ring and sterically hindered N-substituted groups, were designed and synthesized, with the asymmetric reductive amination of quinoline aldehyde with arylamine compounds as the key step. Subsequently, using palladium-catalyzed intramolecular α-arylation and copper-catalyzed protoboration of functionalization of alkenes as the model reactions, the relationship between the structure of these ligands and their catalytic performance was systematically investigated. It was found that the 8-substituted groups on the tetrahydroquinoline scaffold and the bulky chiral N-substituted groups played important roles in enhancing the chiral induction ability of the ligands.

Cite this article

Qingduan Meng , Jiahong Han , Yixiao Pan , Wei Hao , Qing-Hua Fan . Asymmetric Synthesis of C1-Symmetric Chiral N-Heterocyclic Carbene (NHC) Ligands and Their Applications in Asymmetric Catalysis[J]. Acta Chimica Sinica, 2023 , 81(10) : 1271 -1279 . DOI: 10.6023/A23060268

References

[1]
(a) Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612.
[1]
(b) Wang, F.; Liu, L.-J.; Wang, W.; Li, S.; Shi, M. Coord. Chem. Rev. 2012, 256, 804.
[1]
(c) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
[2]
Arduengo, A. J. III; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.
[3]
(a) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.
[3]
(b) Albright, A.; Gawley, R. E. J. Am. Chem. Soc. 2011, 133, 19680.
[3]
(c) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376.
[3]
(d) Schwamb, C. B.; Fitzpatrick, K. P.; Brueckner, A. C.; Richardson, H. C.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2018, 140, 10644.
[4]
(a) Herrmann, W. A.; Goossen, L. J.; K?cher, C.; Artus, G. R. J. Angew. Chem. Int. Ed. 1996, 35, 2805.
[4]
(b) Seiders, T. J.; Ward, D.W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
[4]
(c) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704.
[4]
(d) Würtz, S.; Lohre, C.; Fr?hlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344.
[4]
(e) Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed. 2012, 51, 2870.
[4]
(f) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169.
[5]
Foster, D.; Borhanuddin, S. M.; Dorta, R. Dalton Trans. 2021, 50, 17467.
[6]
Czerwiński, P. J.; Michalak, M. Synthesis 2019, 51, 1689.
[7]
(a) Wang, T.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2013, 52, 7172.
[7]
(b) Ma, W.; Zhang, J.; Xu, C.; Chen, F.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 12891.
[7]
(c) Chen, Y.; Pan, Y.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 16831.
[7]
(d) Han, J.; Pan, Y.; Hao, W.; Fan, Q.-H. Synthesis 2023, 55, 2206.
[7]
(e) Han, J.; He, Y.-M.; Pan, Y. Li, F. Li, D.; Hao, W.; Fan, Q.-H. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302781.
[8]
(a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.
[8]
(b) Arao, T.; Kondo, K.; Aoyama, T. Chem. Pharm. Bull. 2006, 54, 1743.
[8]
(c) Kündig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli, G. Angew. Chem., Int. Ed. 2007, 46, 8484.
[8]
(d) Luan, X.; Mariz, R.; Robert, C.; Gatti, M.; Blumentritt, S.; Linden, A.; Dorta, R. Org. Lett. 2008, 10, 5569.
[8]
(e) Würtz, S.; Lohre, C.; Fr?hlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344.
[8]
(f) Liu, L.; Ishida, N.; Ashida, S.; Murakami, M. Org. Lett. 2011, 13, 1666.
[9]
(a) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
[9]
(b) O’Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630.
[9]
(c) Huang, L.; Cao, Y.; Zhao, M.; Tang, Z.; Sun, Z. Org. Biomol. Chem. 2014, 12, 6554.
[9]
(d) Koppenwallner, M.; Rais, E.; Uzarewicz-Baig, M.; Tabassum, S.; Gilani, M. A.; Wilhelm, R. Synthesis 2015, 47, 789.
[9]
(e) Wang, L.; Chen, Z.; Ma, M.; Duan, W.; Song, C.; Ma, Y. Org. Biomol. Chem. 2015, 13, 10691.
[9]
(f) Miwa, Y.; Kamimura, T.; Sato, K.; Shishido, D.; Yoshida, K. J. Org. Chem. 2019, 84, 14291.
[9]
(g) Dahiya, G.; Pappoppula, M.; Aponick, A. Angew. Chem., Int. Ed. 2021, 60, 19604.
[9]
(h) Xi, L.; Shi, Z. Chin. J. Org. Chem. 2021, 41, 1264 (in Chinese).
[9]
(席龙龙, 史壮志, 有机化学, 2021, 41, 1264.)
Outlines

/