Asymmetric Synthesis of C1-Symmetric Chiral N-Heterocyclic Carbene (NHC) Ligands and Their Applications in Asymmetric Catalysis★
Received date: 2023-06-02
Online published: 2023-07-11
Supported by
National Key R&D Program of China(2021YFA1500200); National Natural Science Foundation of China(92056108); National Natural Science Foundation of China(92256303)
A class of C1-symmetric chiral N-heterocyclic carbene (NHC) ligands, incorporating both chiral fused-ring and sterically hindered N-substituted groups, were designed and synthesized, with the asymmetric reductive amination of quinoline aldehyde with arylamine compounds as the key step. Subsequently, using palladium-catalyzed intramolecular α-arylation and copper-catalyzed protoboration of functionalization of alkenes as the model reactions, the relationship between the structure of these ligands and their catalytic performance was systematically investigated. It was found that the 8-substituted groups on the tetrahydroquinoline scaffold and the bulky chiral N-substituted groups played important roles in enhancing the chiral induction ability of the ligands.
Qingduan Meng , Jiahong Han , Yixiao Pan , Wei Hao , Qing-Hua Fan . Asymmetric Synthesis of C1-Symmetric Chiral N-Heterocyclic Carbene (NHC) Ligands and Their Applications in Asymmetric Catalysis★[J]. Acta Chimica Sinica, 2023 , 81(10) : 1271 -1279 . DOI: 10.6023/A23060268
| [1] | (a) Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. |
| [1] | (b) Wang, F.; Liu, L.-J.; Wang, W.; Li, S.; Shi, M. Coord. Chem. Rev. 2012, 256, 804. |
| [1] | (c) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. |
| [2] | Arduengo, A. J. III; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. |
| [3] | (a) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840. |
| [3] | (b) Albright, A.; Gawley, R. E. J. Am. Chem. Soc. 2011, 133, 19680. |
| [3] | (c) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376. |
| [3] | (d) Schwamb, C. B.; Fitzpatrick, K. P.; Brueckner, A. C.; Richardson, H. C.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2018, 140, 10644. |
| [4] | (a) Herrmann, W. A.; Goossen, L. J.; K?cher, C.; Artus, G. R. J. Angew. Chem. Int. Ed. 1996, 35, 2805. |
| [4] | (b) Seiders, T. J.; Ward, D.W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225. |
| [4] | (c) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704. |
| [4] | (d) Würtz, S.; Lohre, C.; Fr?hlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344. |
| [4] | (e) Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed. 2012, 51, 2870. |
| [4] | (f) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169. |
| [5] | Foster, D.; Borhanuddin, S. M.; Dorta, R. Dalton Trans. 2021, 50, 17467. |
| [6] | Czerwiński, P. J.; Michalak, M. Synthesis 2019, 51, 1689. |
| [7] | (a) Wang, T.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2013, 52, 7172. |
| [7] | (b) Ma, W.; Zhang, J.; Xu, C.; Chen, F.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2016, 55, 12891. |
| [7] | (c) Chen, Y.; Pan, Y.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 16831. |
| [7] | (d) Han, J.; Pan, Y.; Hao, W.; Fan, Q.-H. Synthesis 2023, 55, 2206. |
| [7] | (e) Han, J.; He, Y.-M.; Pan, Y. Li, F. Li, D.; Hao, W.; Fan, Q.-H. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302781. |
| [8] | (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402. |
| [8] | (b) Arao, T.; Kondo, K.; Aoyama, T. Chem. Pharm. Bull. 2006, 54, 1743. |
| [8] | (c) Kündig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli, G. Angew. Chem., Int. Ed. 2007, 46, 8484. |
| [8] | (d) Luan, X.; Mariz, R.; Robert, C.; Gatti, M.; Blumentritt, S.; Linden, A.; Dorta, R. Org. Lett. 2008, 10, 5569. |
| [8] | (e) Würtz, S.; Lohre, C.; Fr?hlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344. |
| [8] | (f) Liu, L.; Ishida, N.; Ashida, S.; Murakami, M. Org. Lett. 2011, 13, 1666. |
| [9] | (a) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. |
| [9] | (b) O’Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630. |
| [9] | (c) Huang, L.; Cao, Y.; Zhao, M.; Tang, Z.; Sun, Z. Org. Biomol. Chem. 2014, 12, 6554. |
| [9] | (d) Koppenwallner, M.; Rais, E.; Uzarewicz-Baig, M.; Tabassum, S.; Gilani, M. A.; Wilhelm, R. Synthesis 2015, 47, 789. |
| [9] | (e) Wang, L.; Chen, Z.; Ma, M.; Duan, W.; Song, C.; Ma, Y. Org. Biomol. Chem. 2015, 13, 10691. |
| [9] | (f) Miwa, Y.; Kamimura, T.; Sato, K.; Shishido, D.; Yoshida, K. J. Org. Chem. 2019, 84, 14291. |
| [9] | (g) Dahiya, G.; Pappoppula, M.; Aponick, A. Angew. Chem., Int. Ed. 2021, 60, 19604. |
| [9] | (h) Xi, L.; Shi, Z. Chin. J. Org. Chem. 2021, 41, 1264 (in Chinese). |
| [9] | (席龙龙, 史壮志, 有机化学, 2021, 41, 1264.) |
/
| 〈 |
|
〉 |