Article

Design and Study on Pore Structure of Cathode Double Catalytic Layer in High-temperature Proton Exchange Membrane Fuel Cell

  • Shikun Liu ,
  • Chengwei Deng ,
  • Feng Ji ,
  • Yulin Min ,
  • Hexing Li
Expand
  • a School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306
    b Chemical Power Technology Research and Development Center, Shanghai Institute of Space Power-Sources, Shanghai 201100
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-29

  Online published: 2023-07-18

Supported by

Shanghai Municipal Commission of Science and Technology(20520740900)

Abstract

High-temperature proton exchange membrane fuel cell (HT-PEMFCs) has the advantages of simple hydro-thermal management, strong resistance to CO, direct feeding of reforming gas and high efficiency of cogeneration. It is one of the ideal power sources for the development of clean energy. As the core component of HT-PEMFCs, membrane electrode assembly (MEA) is mainly composed of cathode and anode gas diffusion electrode and proton exchange membrane, which determines the performance and cost of HT-PEMFCs. Therefore, optimizing the structure of gas diffusion electrode (GDE) is an important means to improve the performance and reduce the cost of HT-PEMFC. In this work, from the point of view of catalytic layer, pore-forming agent was introduced into catalytic layer to construct double catalytic layer with different pore structure. Among them, MEA 2 uses 46.7% (w) PtCo/C in the inner catalyst layer without adding pore-forming agent, and the outer catalyst layer uses 40% (w) Pt/C and adds 20% (w) pore-forming agent. It has relatively small ohmic polarization, minimum mass transfer polarization and activation polarization, and has the largest electrochemical active area, and the electrochemical performance is the best. At 160 ℃ and atmospheric pressure, hydrogen and air as fuel, the maximum power density of the single cell composed of the membrane electrode is 439 mW•cm-2, which is 69 mW•cm-2 higher than that of the single cell without pore-forming agent. Whether the pore-forming agent is added into the inner catalytic layer (CL) or the outer CL, the pore structure is adjusted to optimize the phosphoric acid (PA) distribution and reduce the oxygen mass transfer resistance to improve the electrochemical performance. The former catalyst layer has a greater hydrophobicity change and the electrochemical performance is more affected by the PA content, while the latter catalyst layer hydrophobicity changes less and the electrochemical performance is more affected by the oxygen mass transfer resistance. Excessive addition of pore-forming agent inside or outside CL will produce larger ohmic polarization resistance (RΩ), and the acid drowning caused by insufficient hydrophobicity of CL will further reduce the electrochemical performance of the battery.

Cite this article

Shikun Liu , Chengwei Deng , Feng Ji , Yulin Min , Hexing Li . Design and Study on Pore Structure of Cathode Double Catalytic Layer in High-temperature Proton Exchange Membrane Fuel Cell[J]. Acta Chimica Sinica, 2023 , 81(9) : 1135 -1141 . DOI: 10.6023/A23040184

References

[1]
Xiao, F.; Wang, Y.; Wu, Z.; Chen, G.; Yang, F.; Zhu, S.; Shao, M. Adv. Mater. 2021, 33, 2006292.
[2]
Tang, M. H.; Zhang, S. M.; Chen, S. L. Chem. Soc. Rev. 2022, 51, 1529.
[3]
Chen, J. N.; Bailey, J. J.; Britnell, L.; Maria, P. P.; Zhang, Z.; Strudwick, A.; Hack, J.; Guo, Z. M.; Martin, P.; Dan, J. L.; Stuart, M. H. Nano Energy 2022, 93, 106829.
[4]
Hong, L. H.; Wang, B. L.; Zhao, C. G. Appl. Surf. Sci. 2019, 31, 785.
[5]
Mazúr, P.; Soukup, J.; Paidar, M.; Bouzek, K. J. Appl. Electrochem. 2011, 41, 1013.
[6]
Yurko, Y.; Elbaz, L. Electrochim. Acta 2021, 389, 138676.
[7]
Tian, X. L.; Xu, Y. Y.; Zhang, W. Y.; Wu, T.; Xia, B. Y.; Wang, X. ACS Energy Lett. 2017, 2, 2035.
[8]
Wannek, C.; Lehnert, W.; Mergel, J. J. Power Sources 2009, 192, 258.
[9]
Yin, Y.; Liu, J.; Chang, Y. F.; Zhu, Y. Z.; Xie, X.; Qin, Y. Z.; Zhang, J. F.; Jiao, K.; Guiver, M. D. Electrochim. Acta 2018, 296, 450.
[10]
Ji, Z. Q.; Chen, J. N.; Guo, Z. M.; Zhao, Z. Y.; Cai, R. S.; Rigby, T. P.; Sarah, J.; Shen, Y. T.; Holmes, S. M. J. Energy Chem. 2022, 75, 399.
[11]
Li, W. W.; Shang, Y. M.; Wang, S. B.; Xie, X. F.; Lu, Y. F. Chem. Eng. J. 2011, 62, 131. (in Chinese)
[11]
(李微微, 尚玉明, 王树博, 谢晓峰, 吕亚非, 化工学报, 2011, 62, 131.)
[12]
Lee, E.; Kim, D. H.; Pak, C. H. Appl. Surf. Sci. 2020, 510, 145461.
[13]
Kazeminasab, B.; Rowshanzamir, S.; Ghadamian, H. Korean J. Chem. Eng. 2017, 34, 2978.
[14]
Barron, O.; Su, H. N.; Linkov, V.; Pollet, B. G.; Pasupathi, S. K. J. Power Sources 2015, 278, 718.
[15]
Gao, C. M.; Hu, M. S.; Wang, L.; Wang, L. Polymers 2020, 12, 515.
[16]
Sun, M.; Huang, J. C.; Xia, Z. G.; Wang, S. L.; Sun, G. G. AIChE J. 2022, 68, 8.
[17]
Kim, S.; Yuk, S.; Kim, H. G.; Choi, C. Y.; Kim, R. Y.; Lee, J. Y.; Hong, Y. T.; Kim, H. T. J. Mater. 2017, 5, 33.
[18]
Seland, F.; Berning, T.; B?rresen, B.; Tunold, R. J. Power Sources 2006, 160, 1.
[19]
Kim, G. H.; Eom, S.; Kim, M. J.; Yoo, S. J.; Jang, J. H.; Kim, H.; Cho, E. ACS Appl. Mater. Interfaces 2015, 7, 27581.
[20]
Su, H. N.; Liang, H. G.; Bladergroen, J.; Linkov, V.; Pollet, B. G.; Pasupathi, S. J. Electrochem. 2014, 161, 4.
[21]
Liu, S.; Klaus, W.; Werner, L. Int. J. Hydrog. 2021, 46, 27.
[22]
Zhang, J. J.; Wang, H. N.; Li, W.; Zhang, J.; Lu, D.; Yan, W.; Xiang, Y.; Lu, S. F. J. Power Sources 2021, 505, 230059.
[23]
Bender, G.; Zawodzinski, T.; Saab, A. P. J. Power Sources 2003, 124, 114.
[24]
Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Park, H. Y.; Sung, Y. E.; Yoo, S.; Jang, J. ChemComm. 2015, 51, 2968.
[25]
Chao, G.; Tang, H. Y.; Ju, Q.; Li, N. W.; Geng, K. J. Power Sources 2023, 556, 232473.
[26]
Yoon, Y. G.; Yang, T. H.; Park, G. G.; Lee, W. Y.; Kim, C. S. J. Power Sources 2003, 118, 189.
[27]
Su, H. N.; Jao, T. C.; Pasupathi, S.; Bladergroen, B. J.; Linkov, V.; Pollet, B. G. J. Power Sources 2014, 246, 63.
[28]
Garsany, Y.; Atkinson, R. W.; Gould, R. D.; Martin, R.; Dubau, L.; Chatenet, M.; Swider, K. M. J. Power Sources 2021, 514, 230514.
[29]
Zlotorowicz, A.; Jayasayee, K.; Dahl, P. I.; Thomassen, M. S.; Kjelstrup, S. J. Power Sources 2015, 287, 472.
[30]
Zhao, J.; He, X.; Wang, L.; Tian, J.; Wan, C.; Jiang, C. Int. J. Hydrog. 2007, 32, 380.
[31]
Tian, J. H.; Liu, B. W.; Liu, X.; Zhu, K.; Chen, Y. X. PST. 2005, 03, 154. (in Chinese)
[31]
(田建华, 刘邦卫, 刘翔, 朱科, 陈延禧, 化学电源, 2005, 03, 154.)
[32]
Gloaguen, F.; Convert, P.; Gamburzev, S.; Velev, O. A.; Srinivasan, S. Electrochim. Acta 1998, 43, 3767.
[33]
Cui, L. R.; Zhang, J.; Sun, Y. Y.; Lu, S. F.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47. (in Chinese)
[33]
(崔丽瑞, 张劲, 孙一焱, 卢善富, 相艳, 化学学报, 2019, 77, 47.)
[34]
Wang, M.; Chen, M.; Yang, Z. Y.; Liu, G. C.; Lee, J. K.; Yang, W.; Wang, X. D. Energy Convers. Manag. 2019, 191, 132.
[35]
Ji, F.; Zheng, B. W.; Luo, R. Y.; Du, W.; Deng, C. W.; Yang, S.; Liu, Z. Q. Chem. Ind. Eng. Prog. 2022, 41, 5325. (in Chinese)
[35]
(姬峰, 郑博文, 罗若尹, 杜玮, 邓呈维, 杨声, 刘志强, 化工进展, 2022, 41, 5325.)
[36]
Bevilacqua, N.; Schmid, M.; Zeis, R. Power Sources. 2020, 471, 228469.
[37]
Zhang, W. Q.; Yao, D. G.; Tian, L. L.; Xie, Z.; Ma, Q.; Xu, Q.; Pasupathi, S.; Xing, L.; Su, H. N. J. Taiwan Inst. Chem. Eng. 2021, 125, 258.
[38]
Wang, H. S.; Chih, P. H.; Shiuan, W. S.; Tseng, Y. J.; Gang, F. J. Am. Chem. Soc. 2012, 243, 529.
[39]
Zhang, S. M. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2023. (in Chinese)
[39]
(张硕猛, 博士论文, 浙江大学, 杭州, 2023.)
[40]
Duan, K. J.; Roswitha, Z.; Sui, B. J. J. Chongqing Univ. 2022, 45, 34. (in Chinese)
[40]
(段康俊, Roswitha, Z., 隋邦傑, 重庆大学学报, 2022, 45, 34.)
[41]
Bjorn, W. J.; Douglas, R. M. Energy Environ. Sci. 2011, 4, 2790.
[42]
Li, T. Y.; Wang, K. J.; Wang, J. H.; Liu, Y. Q.; Han, Y. F.; Song, J. H.; Hu, H. W.; Lin, G. G.; Liu, Y. Mater. Sci. 2020, 55, 4558.
[43]
Eunae, L.; Do-Hyung, K.; Chanho, P. Appl. Surf. Sci. 2020, 510, 13242.
Outlines

/