Enhanced Performance for Mesoporous Beta Zeolites Supported Pd in the Methane Catalytic Combustion★
Received date: 2023-04-28
Online published: 2023-07-21
Supported by
The National Natural Science Foundation of China(22125204); The National Natural Science Foundation of China(U20B6004)
The environmental problems caused by the release of unburned methane from stationary and mobile combustion processes is becoming more serious in recent years. The catalytic combustion of methane has been regarded to be superior to the conventional combustion, and consequently efficient catalysts play important roles during the process. In this study, mesoporous Beta zeolites have been prepared in the presence of a kind of polymer polydiallyldimethylammonium chloride (PDADMAC) as the mesoscale template and been used for the catalytic combustion of methane after supporting Pd. The samples have been intensively characterized by a series of techniques including X-ray diffraction (XRD), N2 adsorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), temperature program reduction (H2-TPR) etc. It was found that mesoporous volume of the samples could be controlled by altering the amount of mesoporous template (PDADMAC) and Pd nanoparticles supported on mesoporous Beta zeolites were smaller and more reducible than those supported on the conventional Beta zeolites. Furthermore, Pd(II) species were assigned to be the crucial active sites based on the results of XPS together with H2-TPR, and the ratio of the Pd(II) determined the catalytic performance. The relatively strong interaction between Pd and the hydroxyl group (caused by the formation of mesopores) of mesoporous Beta zeolites benefit the high ratio of Pd(II) species. As a result, mesoporous Beta zeolites supported Pd showed better catalytic performance in the catalytic combustion of methane than the conventional Beta zeolites supported Pd. As a typical example, Pd/meso-Beta-H2 sample gave T90 (90% conversion temperature) at only 342 ℃, which was much lower than that of Pd/Beta without mesopores (384 ℃) at the same condition. Additionally, catalytic life test exhibited that Pd/meso-Beta-H2 sample was stable and the conversion remained even after 50 h at high temperatures. Kinetics analysis revealed that the apparent activation energies for mesoporous Beta zeolites supported Pd (86~118 kJ/mol) were much lower than that of the conventional Beta zeolites supported Pd (140 kJ/mol). The excellent catalytic performance of mesoporous Beta zeolites supported Pd would be potentially important for the catalytic combustion of methane in the future.
Key words: zeolite; mesopores; Pd; methane; catalytic combustion
Xupan Xu , Kai Fan , Shengze Zhao , Jian Li , Shan Gao , Zhongbiao Wu , Xiangju Meng , Feng-Shou Xiao . Enhanced Performance for Mesoporous Beta Zeolites Supported Pd in the Methane Catalytic Combustion★[J]. Acta Chimica Sinica, 2023 , 81(9) : 1108 -1112 . DOI: 10.6023/A23040175
| [1] | Feng, X.; Jiang, L.; Li, D.; Tian, S.; Zhu, X.; Wang, H.; He, C.; Li, K. J. Energy Chem. 2022, 75, 173. |
| [2] | Wang, Y.; Hu, P.; Yang, J.; Zhu, Y.; Chen, D. Chem. Soc. Rev. 2021, 50, 4299. |
| [3] | Lambert, C. Nat. Catal. 2019, 2, 554. |
| [4] | Yang, J.; Chang, Y.; Da, W.; Wu, G.; Guan, N.; Li, L. Appl. Catal., B 2018, 236, 404. |
| [5] | Habibi, A.; Semagina, N.; Hayes, R. Ind. Eng. Chem. Res. 2018, 57, 8160. |
| [6] | Zhao, H.; Tan, Y.; Li, L.; Su, Y.; Wang, A.; Liu, X.; Zhang, T. Chem. Eng. J. 2023, 451, 138937. |
| [7] | Danielis, M.; Colussi, S.; Leitenburg, C.; Soler, L.; Llorca, J.; Trovarelli, A. Angew. Chem., Int. Ed. 2018, 57, 10212. |
| [8] | Wang, M.; Zheng, Y.; Weng, W. Chem. J. Chin. Univ. 2022, 43, 20210816. (in Chinese) |
| [8] | (王明智, 郑燕萍, 翁维正, 高等学校化学学报, 2022, 43, 20210816.) |
| [9] | Galinskya, N.; Shafiefarhood, A.; Chen, Y.; Neala, L.; Li, F. Appl. Catal., B 2015, 164, 371. |
| [10] | Fiuk, M.; Adamski, A. Catal. Today 2015, 257, 131. |
| [11] | Tao, F.; Shan, J.; Nguyen, L.; Wang, Z.; Zhang, S.; Wu, Z.; Huang, W.; Zeng, S. Nat. Commun. 2015, 6, 7798. |
| [12] | Du, X.; Liu, Z.; Luo, Y.; Chen, Y.; Gong, M. Acta Chim. Sinica 2005, 63, 1651. (in Chinese) |
| [12] | (杜小春, 刘志敏, 罗勇悦, 陈耀强, 龚茂初, 化学学报, 2005, 63, 1651.) |
| [13] | Zhang, Z.; Li, J.; Yi, T.; Sun, L.; Zhang, Y.; Hu, X.; Cui, W.; Yang, X. Chin. J. Catal. 2018, 39, 1228. |
| [14] | Li, H.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. Renewable and Sustainable Energy Rev. 2020, 119, 109589. |
| [15] | Cargnello, M.; Jaen, J.; Garrido, J.; Bakhmutsky, K.; Montini, T.; Gamez, J.; Gorte, R.; Fornasiero, P. Science 2012, 337, 7137. |
| [16] | Yang, J.; Peng, M.; Ren, G.; Qi, H.; Zhou, X.; Xu, J.; Deng, F.; Chen, Z.; Zhang, J.; Liu, K.; Pan, X.; Liu, W.; Su, Y.; Li, W.; Qiao, B.; Ma, D.; Zhang, T. Angew. Chem., Int. Ed. 2020, 59, 18522. |
| [17] | Li, J.; Zhang, Y.; Shan, W.; He, H. Fuel 2023, 340, 127493. |
| [18] | Zhang, M.; Yan, T.; Dai, W.; Guan, N.; Li, L. Acta Chim. Sinica 2020, 78, 1404. (in Chinese) |
| [18] | (张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.) |
| [19] | Wang, W.; Zhou, W.; Li, W.; Xiong, X.; Wang, Y.; Cheng, K.; Kang, J.; Zhang, Q.; Wang, Y. Appl. Catal., B 2020, 276, 119142. |
| [20] | Gao, M.; Gong, Z.; Weng, X.; Shang, W.; Chai, Y.; Dai, W.; Wu, G.; Guan, N.; Li, L. Chin. J. Catal. 2021, 42, 1689. |
| [21] | Wang, G.; Xu, S.; Wang, L.; Liu, Z.; Dong, X.; Wang, L.; Zheng, A.; Meng, X.; Xiao, F.-S. Chem. Commun. 2018, 54, 3274. |
| [22] | Chen, C.; Zhu, J.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F.-S. Appl. Catal., B 2013, 140, 19. |
| [23] | Zhu, Y.; Wang, J.; Zhai, Y.; Shen, G.; Wang, J.; Wang, C.; Shen, M. Catal. Sci. Technol. 2022, 12, 3464. |
| [24] | Zhang, L.; Chen, J.; Guo, X.; Yin, S.; Zhang, M.; Rui, Z. Catal. Today 2021, 376, 119. |
| [25] | Wang, L.; Zhang, Z.; Yin, C.; Shan, Z.; Xiao, F.-S. Microporous Mesoporous Mater. 2010, 131, 58. |
| [26] | Weng, X.; Ren, W.; Chen, M.; Wan, H. ACS Catal. 2014, 4, 2598. |
/
| 〈 |
|
〉 |