Original article

Single Phase Zinc Sulfide Quantum Dots for Fabrication of White Light Emitting Diodes (WQLEDs)

  • Kuichen Li ,
  • Kaiyuan Zheng ,
  • Jingjia He ,
  • Zehao Jin ,
  • Qiu He ,
  • Lili Wang
Expand
  • a College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150000
    b College of Materials Science and Engineering, Sichuan University, Chengdu 610000

Received date: 2023-05-16

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(21304014); Fundamental Research Funds for the Central Universities(DL10BB04)

Abstract

Preparation of undoped rare earth element, inexpensive and environmentally friendly single-phase quantum dots luminescent materials is crucial for realizing large-scale commercial application of white-light quantum dots diodes (WQLEDs). In this work, zinc sulfide quantum dots (ZnS-QDs) were prepared by a one-step hydrothermal method. The experimental method was to add zinc acetate into the mixed solution of water and ethanol, adjust the pH to 5~6, and then add thiourea. All raw materials were evenly mixed and put into a high-temperature hydrothermal reactor, and then ZnS-QDs was synthesized under the high-temperature condition of 240 ℃. By changing the ratio of water and ethanol in the solution and adjusting the pH, ZnS-QDs was obtained. The fluorescence emission peak of ZnS-QDs was about 535~566 nm. The thermogravimetric analysis of the obtained ZnS-QDs showed that the thermal decomposition temperature was up to 680 ℃. The measured fluorescence quantum yield was 16.3%. The luminescence mechanism of zinc vacancy in ZnS-QDs and the influence of changing synthesis conditions on the band gap width were discussed by UV absorption spectrum and theoretical calculation. After the mixture of ZnS-QDs phosphors and organic silica gel was dropped on the ultraviolet LED chip with the excitation light source of 365 nm, the input voltage was 3.4 V and the current was 100~500 mA, the light was lit. Standard white quantum dot LEDs were obtained. The international commission on illumination (CIE) coordinates of WQLEDs at 300 mA are (0.3725, 0.4006), the color rendering index (CRI) is 76.6 and the correlation color temperature (CCT) was 4500 K. The tricolor ratio (R, G, B) was R=14.6%, G=83.5%, B=1.8%. It could be seen that green was the majority of the three colors, and the blue content was relatively small, which was conducive to the protection of eyes. This study provides a promising method for realizing WQLEDs using single-phase quantum dots.

Cite this article

Kuichen Li , Kaiyuan Zheng , Jingjia He , Zehao Jin , Qiu He , Lili Wang . Single Phase Zinc Sulfide Quantum Dots for Fabrication of White Light Emitting Diodes (WQLEDs)[J]. Acta Chimica Sinica, 2023 , 81(10) : 1327 -1333 . DOI: 10.6023/A23050231

References

[1]
Xiang, H.; Wang, R.; Chen, J.; Li, F.; Zeng, H. Light Sci. Appl. 2021, 10, 206.
[2]
Cheng, Y.; Wan, H.; Liang, T.; Liu, C.; Wu, M.; Hong, H.; Liu, K.; Shen, H. J. Phys. Chem. Lett. 2021, 12, 5967.
[3]
Nardelli, A.; Deuschle, E.; de Azevedo, L. D.; Pessoa, J. L. N.; Ghisi, E. Renewable Sustainable Energy Rev. 2017, 75, 368.
[4]
Li, Y.; Li, J.; Xu, L.; Chen, J.; Song, J. Acta Chim. Sinica 2021, 79, 126 (in Chinese).
[4]
(李严, 李金航, 许蕾梦, 陈嘉伟, 宋继中, 化学学报, 2021, 79, 126.)
[5]
Guo, Z.; Zhou, H. Acta Chim. Sinica 2021, 79, 223 (in Chinese).
[5]
(郭镇域, 周欢萍, 化学学报, 2021, 79, 223.)
[6]
Qi, H.; Wang, S.; Jiang, X.; Fang, Y.; Wang, A.; Shen, H.; Du, Z. J. Mater. Chem. C 2020, 8, 10160.
[7]
Hou, S.; Gangishetty, M. K.; Quan, Q.; Congreve, D. N. Joule 2018, 2, 2421.
[8]
Chen, T.; Ren, Y.; Xu, Y.; Jiang, W.; Wang, L.; Jiang, W.; Xie, Z. J. Alloy Compd. 2021, 858, 158084.
[9]
Khan, W. U.; Zhou, L.; Li, X.; Zhou, W.; Khan, D.; Niaz, S.-I.; Wu, M. Chem. Eng. J. 2021, 410, 128455.
[10]
Ricci, P. C. Crystals 2020, 10, 559.
[11]
Pavitra, E.; Seeta Rama Raju, G.; Krishna Bharat, L.; Park, J. Y.; Kwak, C. H.; Chung, J. W.; Han, Y. K.; Huh, Y. S. J. Mater. Chem. C 2018, 6, 12746.
[12]
Cao, F.; Zhao, D.; Shen, P.; Wu, J.; Wang, H.; Wu, Q.; Wang, F.; Yang, X. Adv. Opt. Mater. 2018, 6, 1800652.
[13]
Wu, H.; Lin, S.; Wang, R.; You, X.; Chi, Y. Nanoscale 2019, 11, 5557.
[14]
Li, F.; You, L.; Li, H.; Gu, X.; Wei, J.; Jin, X.; Nie, C.; Zhang, Q.; Li, Q. J. Lumin. 2017, 192, 867.
[15]
Xiao, F.; Xue, Y. N.; Ma, Y. Y.; Zhang, Q. Y. Physica B 2010, 405, 891.
[16]
Amaranatha Reddy, D.; Liu, C.; Vijayalakshmi, R. P.; Reddy, B. K. J. Alloy Compd. 2014, 582, 257.
[17]
Cao, J.; Yang, J.; Zhang, Y.; Yang, L.; Wang, Y.; Wei, M.; Liu, Y.; Gao, M.; Liu, X.; Xie, Z. J. Alloy Compd. 2009, 486, 890.
[18]
Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H. Appl. Surf. Sci. 2012, 14, 299.
[19]
Nasser, R.; Elhouichet, H.; Férid, M. Appl. Surf. Sci. 2015, 351, 1122.
[20]
Rajabi, H. R.; Shahrezaei, F.; Farsi, M. J. Mater. Sci.: Mater. Electron. 2016, 27, 9297.
[21]
He, L.; Yang, L.; Liu, B.; Zhang, J.; Zhang, C.; Liu, S.; Chen, S.; Zapien, J. A.; Alamry, K. A.; Asiri, A. M.; Zhang, K.; Wang, S. J. Alloy Compd. 2019, 787, 537.
[22]
Jiang, W.; Wang, L.; Xie, Z.; Jiang, W.; Xu, Y.; Chen, T. J. Inorg. Mater. 2020, 35, 440.
[23]
Wang, C.; Li, Q.; Hu, B. Int. J. Mod. Phys. B 2017, 31, 1744055.
[24]
Mai, X. D.; Phan, Y. T. H.; Nguyen, V. Q. Adv. Mater. Sci. Eng. 2020, 9643168.
[25]
Zhu, J.; Wang, S. N.; Li, J. J.; Zhao, J.-W. J. Lumin. 2018, 199, 216.
[26]
Curcio, A. L.; da Silva, L. F.; Bernardi, M. I. B.; Longo, E.; Mesquita, A. J. Lumin. 2019, 206, 292.
[27]
Yang, W. P. M.S. Thesis, Huazhong University of Science and Technology, Wuhan, 2017 (in Chinese).
[27]
( 杨玮平, 硕士论文, 华中科技大学, 武汉, 2017)
[28]
Qin, X.-M. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2018 (in Chinese).
[28]
( 秦新明, 博士论文, 中国科学技术大学,合肥, 2018)
Outlines

/