Regulation of Tendon-bone Related Multiple Cells by Chemical Ions Released from Mo-containing Silicate Bioceramics★
Received date: 2023-04-07
Online published: 2023-07-21
Supported by
National Natural Science Foundation of China(32225028)
Understanding the relationship between the chemical signals generated by biological materials and cellular behaviors has great significance for the design and preparation of high-performance tissue engineering biomaterials. In the past several decades, silicate bioceramics have been widely used in tissue engineering. Bioactive ions released from silicate bioceramics can act as chemical signals to regulate cellular behaviors and promote the tissue regeneration. Moreover, by regulating the components of silicate bioceramics, silicate bioceramics can generate specific chemical signals to regulate cellular behaviors of multiple cells. Here, by introducing molybdenum (Mo) element into silicate bioceramics, we have successfully developed Mo-containing silicate (MS) bioceramics which are able to regulate cellular behaviors of tendon stem/progenitor cells (TSPCs) and bone marrow mesenchymal stem cells (BMSCs) simultaneously. Using ammonium molybdate as a source of Mo element, MS bioceramics were prepared by chemical coprecipitation method. The synthesized MS bioceramics were mostly below 10 μm in size and had uniform distribution of Mo elements. Moreover, MS bioceramics were composed of high-purity CaMoO4 and CaSiO3. To explore the effect of chemical signals generated from MS bioceramics on TSPCs and BMSCs, we prepared MS extracts for cell culture. MS bioceramics supported the survival of TSPCs and BMSCs and maintained a better cellular state during the culture period of 5 d. Due to the released Ca, Si and Mo ions from MS bioceramics, TSPCs and BMSCs cultured with MS extracts exhibited excellent proliferation and migration activities. Interestingly, after cultured with MS extracts in the appropriate concentration, the expression of osteogenic genes and protein of BMSCs and the expression of tenogenic genes and protein of TSPCs were significantly enhanced, suggesting that chemical signals generated by MS bioceramics simultaneously promoted the specific differentiation of TSPCs and BMSCs. Such MS bioceramics are believed to be an effective “bioactive factor” for repairing injury at the tendon-bone interfaces.
Lin Du , Jianmin Xue , Zhiguang Huan , Chengtie Wu . Regulation of Tendon-bone Related Multiple Cells by Chemical Ions Released from Mo-containing Silicate Bioceramics★[J]. Acta Chimica Sinica, 2023 , 81(10) : 1334 -1340 . DOI: 10.6023/A23040120
[1] | Zhou, Y.; Wu, C.; Chang, J. Mater. Today 2019, 24, 41. |
[2] | Zhang, H.; Ma, W.; Ma, H.; Qin, C.; Chen, J.; Wu, C. Adv. Healthcare Mater. 2022, 11, e2102359. |
[3] | Wu, C. T.; Chang, J. Biomed. Mater. 2013, 8, 032001. |
[4] | Srinath, P.; Azeem, P. A.; Reddy, K. V. Int. J. Appl. Ceram. Technol. 2020, 17, 2450. |
[5] | Yu, Q.; Chang, J.; Wu, C. J. Mater. Chem. B 2019, 7, 5449. |
[6] | Brokesh, A. M.; Gaharwar, A. K. ACS Appl. Mater. Interfaces 2020, 12, 5319. |
[7] | Qin, C.; Wu, C. View 2022, 20210018. |
[8] | Wu, Y.; Zhu, S. A.; Wu, C. T.; Lu, P.; Hu, C. C.; Xiong, S.; Chang, J.; Heng, B. C.; Xiao, Y.; Ouyang, H. W. Adv. Funct. Mater. 2014, 24, 4473. |
[9] | Deng, C. J.; Chang, J.; Wu, C. T. J. Orthop. Translat. 2019, 17, 15. |
[10] | Fan, C.; Xu, Q.; Hao, R. Q.; Wang, C.; Que, Y. M.; Chen, Y. X.; Yang, C.; Chang, J. Biomaterials 2022, 287, 121652. |
[11] | Wu, C. T.; Chang, J. J. Controlled Release 2014, 193, 282. |
[12] | Hoppe, A.; Guldal, N. S.; Boccaccini, A. R. Biomaterials 2011, 32, 2757. |
[13] | Chen, X.; Shuai, D.; Jiang, Z.; Yang, H.; Luo, D.; Ni, H.; Wang, L.; Chen, B. Acta Chim. Sinica 2022, 80, 116 (in Chinese). |
[13] | (陈祥松, 帅蝶, 姜泽东, 杨晗, 罗丹, 倪辉, 王力, 陈丙年, 化学学报, 2022, 80, 116.) |
[14] | Hu, Z.; Sun, Z.; Zhang, Y.; Wu, R.; Zou, H. Acta Chim. Sinica 2012, 70, 2059 (in Chinese). |
[14] | (胡争艳, 孙珍, 张轶, 吴仁安, 邹汉法, 化学学报, 2012, 70, 2059.) |
[15] | Li, J.; Li, B.; Wang, J.; He, L.; Zhao, Y. Acta Chim. Sinica 2021, 79, 238 (in Chinese). |
[15] | (李佳欣, 李蓓, 王纪康, 何蕾, 赵宇飞, 化学学报, 2021, 79, 238.) |
[16] | Lin, K. L.; Xia, L. G.; Li, H. Y.; Jiang, X. Q.; Pan, H. B.; Xu, Y. J.; Lu, W. W.; Zhang, Z. Y.; Chang, J. Biomaterials 2013, 34, 10028. |
[17] | Zhang, H. J.; Ma, W. P.; Ma, H. S.; Qin, C.; Chen, J. J.; Wu, C. T. Adv. Healthcare Mater. 2022, 11, e2102359. |
[18] | Dang, G. P.; Qin, W.; Wan, Q. Q.; Gu, J. T.; Wang, K. Y.; Mu, Z.; Gao, B.; Jiao, K.; Tay, F. R.; Niu, L. N. Adv. Funct. Mater. 2022, 2210275. |
[19] | Sun, Y.; Jung, H. W.; Kwak, J. M.; Tan, J.; Wang, Z.; Jeon, I. H. J. Orthop. Translat. 2020, 24, 175. |
[20] | Lei, T.; Zhang, T.; Ju, W.; Chen, X.; Heng, B. C.; Shen, W.; Yin, Z. Bioact. Mater. 2021, 6, 2491. |
[21] | Han, F.; Li, T.; Li, M. M.; Zhang, B. J.; Wang, Y. F.; Zhu, Y. F.; Wu, C. T. Bioact. Mater. 2023, 20, 29. |
[22] | Liu, Z. R.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Adv. Mater. 2021, 33, 2007429. |
[23] | Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.; Borisy, G.; Parsons, J. T.; Horwitz, A. R. Science 2003, 302, 1704. |
[24] | Martin, P. Science 1997, 276, 75. |
[25] | Qin, C.; Ma, J.; Chen, L.; Ma, H.; Zhuang, H.; Zhang, M.; Huan, Z.; Chang, J.; Ma, N.; Wu, C. Mater. Today 2021, 49, 68. |
[26] | Tian, B. M.; Li, X.; Zhang, J. J.; Zhang, M.; Gan, D.; Deng, D. K.; Sun, L. J.; He, X. T.; Wu, C. T.; Chen, F. M. Int. J. Oral Sci. 2022, 14, 523. |
[27] | Schwarz, G.; Mendel, R. R.; Ribbe, M. W. Nature 2009, 460, 839. |
[28] | He, X. T.; Li, X.; Zhang, M.; Tian, B. M.; Sun, L. J.; Bi, C. S.; Deng, D. K.; Zhou, H.; Qu, H. L.; Wu, C.; Chen, F. M. Biomaterials 2022, 283, 121439. |
[29] | Wang, S. K.; Yao, Z. X.; Zhang, X. Y.; Li, J. H.; Huang, C.; Ouyang, Y. M.; Qian, Y.; Fan, C. Y. Adv. Sci. 2022, 9, 2202542. |
[30] | Dang, W.; Wang, X.; Li, J.; Deng, C.; Liu, Y.; Yao, Q.; Wang, L.; Chang, J.; Wu, C. Theranostics 2018, 8, 4372. |
[31] | Du, L.; Qin, C.; Zhang, H. J.; Han, F.; Xue, J.; Wang, Y.; Wu, J.; Xiao, Y.; Huan, Z.; Wu, C. Adv. Sci. 2023, 10, 2301309. |
[32] | Zhang, Y.; Lei, T.; Tang, C.; Chen, Y.; Liao, Y.; Ju, W.; Zhang, H.; Zhou, B.; Liang, R.; Zhang, T.; Fan, C.; Chen, X.; Zhao, Y.; Xie, Y.; Ye, J.; Heng, B. C.; Chen, X.; Hong, Y.; Shen, W.; Yin, Z. Biomaterials 2021, 271, 120722. |
[33] | Griffith, L. G.; Naughton, G. Science 2002, 295, 1009. |
[34] | Alberton, P.; Dex, S.; Popov, C.; Shukunami, C.; Schieker, M.; Docheva, D. Stem Cells Dev. 2015, 24, 597. |
[35] | Zhang, H. J.; Qin, C.; Zhang, M.; Han, Y. H.; Ma, J. G.; Wu, J. F.; Yao, Q. Q.; Wu, C. T. Nano Today 2022, 46, 101584. |
[36] | Patel, S. H.; Yue, F.; Saw, S. K.; Foguth, R.; Cannon, J. R.; Shannahan, J. H.; Kuang, S.; Sabbaghi, A.; Carroll, C. C. Sci. Rep. 2019, 9, 12614. |
[37] | Izumi, S.; Otsuru, S.; Adachi, N.; Akabudike, N.; Enomoto-Iwamoto, M. PLoS One 2019, 14, e0213912. |
[38] | Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. Biomaterials 2005, 26, 4847. |
[39] | Shi, M.; Zhou, Y.; Shao, J.; Chen, Z.; Song, B.; Chang, J.; Wu, C.; Xiao, Y. Acta Biomater. 2015, 21, 178. |
[40] | Huang, Y.; Wu, C.; Zhang, X.; Chang, J.; Dai, K. Acta Biomater. 2018, 66, 81. |
[41] | Dong, X. X.; Wang, X. Y.; Xing, M.; Zhao, C. C.; Guo, B.; Cao, J. K.; Chang, J. Regener. Biomater. 2020, 7, 9. |
/
〈 |
|
〉 |