Review

Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance

  • Guan-Wen Yang ,
  • Guang-Peng Wu
Expand
  • Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-05

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(22101253); National Science Fund for Distinguished Young Scholars(T2225004)

Abstract

Organoboron compounds are a class of non-metallic catalysts that have been extensively studied in recent years and have shown excellent applicability for ring-opening homopolymerization of epoxides and copolymerization of epoxides with other comonomers. However, the binary electrophile/nucleophile catalytic systems often have reduced activity or be deactivated due to the entropic disadvantage under dilute conditions, and it is also difficult to afford polymer materials with high molecular weight. This paper reviews the progress of bifunctional organoboron-quaternary ammonium/phosphonium salt catalytic systems containing both electrophilic and nucleophilic centers in one molecule that was designed by our group, focuses on the design concepts and principles of such bifunctional organoboron catalysts, compares the polymerization mechanisms between bifunctional and binary organoboron catalytic systems, and summarizes the use of bifunctional organoboron catalysts in the ring-opening polymerization of epoxides to prepare aliphatic polyethers, the copolymerization of epoxides and carbon dioxide/cyclic anhydride to prepare polycarbonates/polyesters. The future and trend of organoboron catalysts in polymer chemistry were prospected.

Cite this article

Guan-Wen Yang , Guang-Peng Wu . Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance[J]. Acta Chimica Sinica, 2023 , 81(11) : 1551 -1565 . DOI: 10.6023/A23050206

References

[1]
MacMillan D. W. Nature 2008, 455, 304.
[2]
Han B.; He X. H.; Liu Y. Q.; He G.; Peng C.; Li J. L. Chem. Soc. Rev. 2021, 50, 1522.
[3]
Ooi T.; Crudden C. Acs Catal. 2021, 11, 15234.
[4]
Kiesewetter M. K.; Shin E. J.; Hedrick J. L.; Waymouth R. M. Macromolecules 2010, 43, 2093.
[5]
Hu S.; Zhao J.; Zhang G.; Schlaad H. Prog. Polym. Sci. 2017, 74, 34.
[6]
Bossion A.; Heifferon K. V.; Meabe L.; Zivic N.; Taton D.; Hedrick J. L.; Long T. E.; Sardon H. Prog. Polym. Sci. 2019, 90, 164.
[7]
Takeda N.; Inoue S. Macromol. Chem. Phys. 1978, 179, 1377
[8]
Cokoja M.; Bruckmeier C.; Rieger B.; Herrmann W. A.; Kuhn F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.
[9]
Coates G. W.; Moore D. R. Angew. Chem., Int. Ed. 2004, 43, 6618.
[10]
Darensbourg D. J. Chem. Rev. 2007, 107, 2388.
[11]
Lu X.-B.; Darensbourg D. J. Chem. Soc. Rev. 2012, 41, 1462.
[12]
Klaus S.; Lehenmeier M. W.; Anderson C. E.; Rieger B. Coord. Chem. Rev. 2011, 255, 1460.
[13]
Nakano K.; Kamada T.; Nozaki K. Angew. Chem., Int. Ed. 2006, 45, 7274.
[14]
Lidston C. A. L.; Severson S. M.; Abel B. A.; Coates G. W. ACS Catal. 2022, 12, 11037.
[15]
Lu X. B.; Ren B. H. Chin. J. Polym. Sci. 2022, 40, 1331.
[16]
Ren W.-M.; Liu Z.-W.; Wen Y.-Q.; Zhang R.; Lu X.-B. J. Am. Chem. Soc. 2009, 131, 11509.
[17]
Wu G.-P.; Wei S.-H.; Lu X.-B.; Ren W.-M.; Darensbourg D. J. Macromolecules 2010, 43, 9202.
[18]
Wu G.-P.; Wei S.-H.; Ren W.-M.; Lu X.-B.; Xu T.-Q.; Darensbourg D. J. J. Am. Chem. Soc. 2011, 133, 15191.
[19]
Zhang D.; Boopathi S. K.; Hadjichristidis N.; Gnanou Y.; Feng X. J. Am. Chem. Soc. 2016, 138, 11117.
[20]
Zhang D.-D.; Feng X.; Gnanou Y.; Huang K.-W. Macromolecules 2018, 51, 5600.
[21]
Naumann S. Poly. Chem. 2023, 14, 1834.
[22]
Chen Y.; Liu S.; Zhao J-P. Acta Polymerica Sinica 2020, 51, 1067.
[22]
( 陈烨, 刘珊, 赵俊鹏. 高分子学报, 2020, 51, 1067.)
[23]
Wu G.-P.; Yang G.-W.; Zhang, Y.-Y. 2018, ZL201811107527.9.
[24]
Wu G.-P.; Yang G.-W.; Zhang, Y.-Y. 2020, ZL202010018753.0.
[25]
Yang G.-W.; Zhang, Y.-Y.; Wu, G.-P. WO2020057356.
[26]
Yang G. W.; Zhang Y. Y.; Wu G. P. Acc. Chem. Res. 2021, 54, 4434.
[27]
Yang G.-W.; Zhang Y.-Y.; Xie R.; Wu G.-P. J. Am. Chem. Soc. 2020, 142, 12245.
[28]
Xie R.; Zhang Y. Y.; Yang G. W.; Zhu X. F.; Li B.; Wu G. P. Angew. Chem., Int. Ed. 2021, 60, 19253.
[29]
Rieth L. R.; Moore D. R.; Lobkovsky E. B.; Coates G. W. J. Am. Chem. Soc. 2002, 124, 15239.
[30]
Amgoune A.; Thomas C. M.; Ilinca S.; Roisnel T.; Carpentier J. F. Angew. Chem., Int. Ed. 2006, 45, 2782.
[31]
Ligny R.; Hanninen M. M.; Guillaume S. M.; Carpentier J. F. Angew. Chem., Int. Ed. 2017, 56, 10388.
[32]
Lohmeijer B. G. G.; Pratt R. C.; Leibfarth F.; Logan J. W.; Long D. A.; Dove A. P.; Nederberg F.; Choi J.; Wade C.; Waymouth R. M.; Hedrick J. L. Macromolecules 2006, 39, 8574.
[33]
Macdonald E. K.; Shaver M. P. Eur. Polym. J. 2017, 95, 702.
[34]
Yang L.; Zhang Y.-Y.; Yang G.-W.; Xie R.; Wu G.-P. Macromolecules 2021, 54, 5509.
[35]
Brulé E.; Guérineau V.; Vermaut P.; Prima F.; Balogh J.; Maron L.; Slawin A. M. Z.; Nolan S. P.; Thomas C. M. Polym. Chem. 2013, 4, 2414.
[36]
Qi H.; Xie R.; Yang G.-W.; Zhang Y.-Y.; Xu C.-K.; Wang Y.; Wu G.-P. Macromolecules 2022, 55, 9081.
[37]
Chen C.; Gnanou Y.; Feng X. S. Polym. Chem. 2022, 13, 6312.
[38]
Herzberger J.; Niederer K.; Pohlit H.; Seiwert J.; Worm M.; Wurm F. R.; Frey H. Chem. Rev. 2016, 116, 2170.
[39]
Steiner E. C. P., R. R.; Trucks R. O. A J. Am. Chem. Soc. 1964, 86, 4678.
[40]
Raghuraman A.; Babb D.; Miller M.; Paradkar M.; Smith B.; Nguyen A. Macromolecules 2016, 49, 6790.
[41]
Imbrogno J.; Ferrier R. C.; Wheatle B. K.; Rose M. J.; Lynd N. A. ACS Catal. 2018, 8, 8796.
[42]
Chakraborty D.; Rodriguez A.; Chen E. Y. X. Macromolecules 2003, 36, 5470.
[43]
E?wein B.; Steidl N. M.; M?ller M. Macromol. Rapid Comm. 1996, 17, 143.
[44]
Chen Y.; Shen J.; Liu S.; Zhao J.; Wang Y.; Zhang G. Macromolecules 2018, 51, 8286.
[45]
Raynaud J.; Ottou W. N.; Gnanou Y.; Taton D. Chem. Comm. 2010, 46, 3203.
[46]
Braune W.; Okuda J. Angew. Chem., Int. Ed. 2003, 42, 64.
[47]
Thomas R. M.; Widger P. C. B.; Ahmed S. M.; Jeske R. C.; Hirahata W.; Lobkovsky E. B.; Coates G. W. J. Am. Chem. Soc. 2010, 132, 16520.
[48]
Morris L. S.; Childers M. I.; Coates G. W. Angew. Chem., Int. Ed. 2018, 57, 5731.
[49]
Yang G.-W.; Zhang Y.-Y.; Xie R.; Wu G.-P. Angew. Chem., Int. Ed. 2020, 59, 16910.
[50]
Bickelhaupt F. M.; Houk K. N. Angew. Chem., Int. Ed. 2017, 56, 10070.
[51]
Zhang Y. Y.; Yang G. W.; Xie R.; Yang L.; Li B.; Wu G. P. Angew. Chem., Int. Ed. 2020, 59, 23291.
[52]
Yang G.-W.; Xu C.-K.; Xie R.; Zhang Y.-Y.; Lu C.; Qi H.; Yang L.; Wang Y.; Wu G.-P. Nat. Synth. 2022, 1, 892.
[53]
Jung M. E.; Piizzi G. Chem. Rev. 2005, 105, 1735.
[54]
Yang G. W.; Wang Y.; Qi H.; Zhang Y. Y.; Zhu X. F.; Lu C.; Yang L.; Wu G. P. Angew. Chem., Int. Ed. 2022, 61, e202210243.
[55]
Inoue S.; Koinuma H.; Tsuruta T. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287.
[56]
Shen Z.-Q.; Chen X.-H.; Zhang Y.-F. Macromol. Chem. Phys. 1994, 195, 2003.
[57]
Wei R.-J.; Zhang X.-H.; Du B.-Y.; Fan Z.-Q.; Qi G.-R. Polymer 2013, 54, 6357.
[58]
Sudakar P.; Sivanesan D.; Yoon S. Macromol. Rapid. Comm. 2016, 37, 788.
[59]
Yang G.-W.; Xu C.-K.; Xie R.; Zhang Y.-Y.; Zhu X.-F.; Wu G.-P. J. Am. Chem. Soc. 2021, 143, 3455.
[60]
Tong Y.; Cheng R.; Dong H.; Liu Z.; Ye J.; Liu, B. J. CO2 Util. 2022, 60, 101979.
[61]
Chen C.; Gnanou Y.; Feng X. Macromolecules 2023, 56, 3, 892.
[62]
Chen C.; Gnanou Y.; Feng X. Macromolecules 2022, 55, 10662.
[63]
Caputo C. B. H., L. J.; Dobrovetsky R.; Stephan D. W. Science 2013, 341, 1374.
[64]
Li H.; Liu H.; Guo H. Adv. Synth. Catal. 2021, 363, 2023.
[65]
Zhang Y.-Y.; Lu C.; Yang G.-W.; Xie R.; Fang Y.-B.; Wang Y.; Wu G.-P. Macromolecules 2022, 55, 6443.
[66]
Hui J.; Wang X.; Yao X.; Li Z. Polym. Chem. 2022, 13, 6551.
[67]
Wang X.-W.; Hui J.-W.; Li Y.-T.; Gu Y.-R.; Li Z.-B. Chin. J. Polym. Sci. 2023, 41, 735.
[68]
Sengoden M.; Bhat G. A.; Darensbourg D. J. RSC Adv. 2022, 12, 32440.
[69]
Schaefer J.; Zhou H.; Lee E.; Lambic N. S.; Culcu G.; Holtcamp M. W.; Rix F. C.; Lin T.-P. ACS Catal. 2022, 12, 11870.
[70]
Wang X.; Hui J.; Shi M.; Kou X.; Li X.; Zhong R.; Li Z. ACS Catal. 2022, 12, 8434.
[71]
Liu Y.; Ren W.-M.; Liu J.; Lu X.-B. Angew. Chem., Int. Ed. 2013, 52, 11594.
[72]
Li J.; Ren B.-H.; Wan Z.-Q.; Chen S.-Y.; Liu Y.; Ren W.-M.; Lu X.-B. J. Am. Chem. Soc. 2019, 141, 8937.
[73]
Liu Y.; Lu X.-B. Chem. - Eur. J. 2023, 29, e202203635.
Outlines

/