Original article

Effect of Controllable Pyrolysis of Ionomers in Fe-N-C Cathode Catalytic Layer on Cell Performance and Stability of Membrane Electrode Assembly

  • Qingxin Wang ,
  • Yong Cui ,
  • Yunqi Li ,
  • Shanfu Lu ,
  • Yan Xiang
Expand
  • Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-26

  Online published: 2023-07-28

Supported by

National Natural Science Foundation of China(U22A20419); National Natural Science Foundation of China(22005016); Beijing Municipal Science and Technology Project(Z221100007522006)

Abstract

Non-precious metal M-N-C catalysts have a low density of active sites, which requires increasing the catalyst loading amount per unit area to obtain sufficient active sites to ensure the required apparent output current of the proton exchange membrane fuel cells (PEMFCs). This inevitably increases the thickness of the catalytic layer. On the one hand, a thick catalytic layer increases the resistance to material transfer, and on the other hand, a thick catalytic layer is more prone to causing “flooding” problems, which further worsens the material transfer problem of the catalytic layer. To address the water flooding and material transfer efficiency challenges of Fe-N-C cathode catalytic layers, this study employed controlled pyrolysis of perfluorinated sulfonic acid ionomer side chains with hydrophilic sulfonic acid groups within the catalytic layer. The in-situ modulation of the hydrophilic-hydrophobic balance at the active sites of the catalyst creates an efficient three-phase interface, enabling high ion conductivity and efficient water and oxygen transport within the Fe-N-C catalytic layer. Consequently, the output performance and stability of the membrane electrode are significantly improved. The results demonstrate that the degree of sulfonic acid group pyrolysis within the catalytic layer ionomer can be effectively controlled by adjusting the pyrolysis temperature and duration. Using a catalytic layer with an ionomer to Fe-N-C catalyst mass ratio (I/C) of 0.5 as a model, the perfluorinated sulfonic acid ionomer's sulfonic acid group decomposition rate was 16.3% after 40 minutes of heat treatment at 250 ℃ under a N2 atmosphere, resulting in an increased hydrophobicity of the catalytic layer surface, as indicated by a surface water contact angle increasing from 113° to 134° while maintaining high ion conductivity. The corresponding membrane electrode exhibited optimal output performance, with a peak power density of 359.7 mW• cm-2, representing a 38% improvement over the pre-treatment electrode. Additionally, under a constant voltage of 0.4 V, the material transfer resistance of the heat-treated catalytic layer decreased by 29.8% to 242.48 mΩ•cm2 compared to the pre-treatment condition. During the 20-hour constant voltage discharge test at 0.4 V, the heat-treated Fe-N-C catalytic layer exhibited higher discharge current density than the untreated membrane electrode. This study demonstrates that partially controlled pyrolysis of catalytic layer ionomer is an effective method for improving the performance and stability of M-N-C non-precious metal catalyst membrane electrode fuel cells.

Cite this article

Qingxin Wang , Yong Cui , Yunqi Li , Shanfu Lu , Yan Xiang . Effect of Controllable Pyrolysis of Ionomers in Fe-N-C Cathode Catalytic Layer on Cell Performance and Stability of Membrane Electrode Assembly[J]. Acta Chimica Sinica, 2023 , 81(10) : 1350 -1356 . DOI: 10.6023/A23040167

References

[1]
Ma, Z.; Cano, Z.; Yu, A.; Chen, Z.; Jiang, G.; Fu, X.; Yang, L.; Wu, T.; Bai, Z.; Lu, J. Angew. Chem. Int. Ed. 2020, 59, 18334.
[2]
Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. Nature 2021, 595, 361
[3]
Yuan, H.; Zhang, Q. J. Energy Chem. 2020, 48, 107.
[4]
Yan, S.; Jiao, L.; He, C.; Jiang, H. Acta Chim. Sinica 2022, 80, 1084 (in Chinese).
[4]
(闫绍兵, 焦龙, 何传新, 江海龙, 化学学报, 2022, 80, 1084.)
[5]
Lim, K.; Lee, A.; Atanasov, V.; Kerres, J.; Park, E.; Adhikari, S. Nat. Energy 2022, 7, 248.
[6]
Jiao, T.; Xu, X.; Zhang, L.; Weng, Y.; Weng, Y.; Gao, Z. Acta Chim. Sinica 2021, 79, 513 (in Chinese).
[6]
(焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤, 化学学报, 2021, 79, 513.)
[7]
Zhao, W.; Xu, X.; Bai, H.; Zhang, J.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2020, 78, 69 (in Chinese).
[7]
(赵伟辰, 徐鑫, 白慧娟, 张劲, 卢善富, 相艳, 化学学报, 2020, 78, 69.)
[8]
Yang, Y.; Peltier, C.; Zeng, R.; Schimmenti, R. Chem. Rev. 2022, 122, 6117.
[9]
Cui, L.; Zhang, J.; Sun, Y.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47 (in Chinese).
[9]
(崔丽瑞, 张劲, 孙一焱, 卢善富, 相艳, 化学学报, 2019, 77, 47.)
[10]
Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S. Angew. Chem., Int. Ed. 2019, 59, 2688.
[11]
He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Chem. Soc. Rev. 2020, 49, 3484.
[12]
Huang, W.; Zhang, H.; Hu, S.; Niu, D.; Zhang, X. Acta Chim. Sinica 2018, 76, 723 (in Chinese).
[12]
(黄文姣, 张浩宇, 胡硕真, 钮东方, 张新胜, 化学学报, 2018, 76, 723.)
[13]
Xiao, F.; Wang, Y.; Wu, Z.; Chen, G.; Yang, F. Adv. Mater. 2021, 33, 2006292.
[14]
Mun, Y.; Kim, M. J.; Park, S. A. Appl. Catal., B 2018, 222, 191
[15]
Deng, Y.; Chi, B.; Tian, X. L. J. Mater. Chem. A 2019, 7, 5020.
[16]
Yang, L.; Cheng, D.; Xu, H. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6626.
[17]
Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; Shao, Y.; Wu, G. J. Am. Chem. Soc. 2017, 139, 14143.
[18]
Li, Y.; Zhang, P.; Wan, L. Adv. Funct. Mater. 2021, 31, 2009645.
[19]
Liu, Q.; Liu, X.; Zheng, L.; Shui, J. Angew. Chem., Int. Ed. 2018, 57, 1218.
[20]
Choi, C. H.; Baldizzone, C.; Grote, J. P. Angew. Chem., Int. Ed. 2015, 54, 12753.
[21]
Liu, S.; Meyer, Q.; Li, Y. Chem. Commun. 2022, 58, 2323.
[22]
Banham, D.; Kishimoto, T.; Zhou, Y. Sci. Adv. 2018, 4, 7180.
[23]
Jaouen, F.; Jones, D.; Coutard, N. Johnson Matthey Technol. Rev. 2018, 62, 231.
[24]
Guo, J.; Li, B.; Zhang, Q.; Liu, Q.; Wang, Z.; Zhao, Y.; Shui, J.; Xiang, Z. Sci. Adv. 2021, 8, 2002249.
[25]
Zhang, G.; Chenitz, R.; Lefèvre, M. Nano Energy 2016, 29, 111.
[26]
Choi, J. Y.; Yang, L.; Kishimoto, T. Energy Environ. Sci. 2017, 10, 296.
[27]
Chenitz, R.; Kramm, U. I.; Lefèvre, M. Energy Environ. Sci. 2018, 11, 365.
[28]
Wan, Z.; Liu, S.; Zhong, Q. Int. J. Hydrogen Energy 2018, 43, 7456.
[29]
Avcioglu, G. S.; Ficicilar, B.; Bayrakceken, A. Int. J. Hydrogen Energy 2015, 40, 7720.
[30]
Zhang, X.; Liu, Q.; Shui, J. ChemElectroChem 2020, 7, 1775.
[31]
Weissmann, M.; Baranton, S.; Clacens, J. M.; Coutanceau, C. Carbon 2010, 48, 2755.
[32]
Sansotera, M.; Bianchi, C. L.; Lecardi, G. Chem. Mater. 2009, 21, 4498.
[33]
Xu, X.; Zhang, X.; Xia, Z.; Sun, R.; Wang, J.; Jiang, Q.; Yu, S.; Wang, S.; Sun, G. ACS Appl. Mater. Interf. 2021, 13, 16279.
[34]
Wang, Y.; Zhu, P.; Yang, H. ChemElectroChem 2018, 5, 1914.
[35]
Samms, S.; Wasmus, S.; Savinell, R. J. Electrochem. Soc. 1996, 143, 1498.
[36]
Zhou, L., Li, Y.; Chen, X. J. Mater. Chem. A 2022, 10, 20323.
[37]
Kim, S.; Her, M.; Kim, Y.; Ahn, C. Y.; Park, S.; Cho, Y.; Sung, Y. Electrochim. Acta 2021, 400, 139439.
[38]
Roca-Ayats, M.; Roca-Moreno, M. D.; Martínez-Huerta, M. V. Int. J. Hydrogen Energy 2016, 41, 19656.
[39]
Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780.
[40]
Chen, H.; Chen, S. J. Electrochem. 2022, 10, 1 (in Chinese).
[40]
(陈浩杰, 陈胜利, 电化学, 2022, 10, 1.)
[41]
Zhang, S.; Dai, H.; Yuan, H. Chin. J. Mech. Eng. 2021, 57, 40 (in Chinese).
[41]
(张少哲, 戴海峰, 袁浩, 机械工程学报, 2021, 57, 40.)
[42]
Wang, G.; Osmieri, L.; Star, A. G.; Pfeilsticker, J.; Neyerlin, K. C. J. Electrochem. Soc. 2020, 167, 044519.
[43]
Chen, T.; Leddy, J. Langmuir 2000, 16, 2866.
[44]
Cheng, X.; Shen, S.; Wei, G.; Wang, C.; Luo, L.; Zhang, J. Adv. Mater. Technol. 2022, 7, 2200228.
Outlines

/