Review

Advances in the Modifications of 4-Monosubstituted 1,2,3-Triazoles

  • Baomin Yang ,
  • Shuitao Zhang ,
  • Xian Dong ,
  • Guiping Qin ,
  • Yubo Jiang
Expand
  • a Faculty of Science, Kunming University of Science and Technology, Kunming 650500
    b College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500

Received date: 2023-06-12

  Online published: 2023-08-15

Supported by

National Natural Science Foundation of China(21662020); National Natural Science Foundation of China(21901091); Academician (Expert) Workstation Project, Wang Yuan Chao Expert Workstation in Yunnan Province(202305AF150018)

Abstract

1,2,3-Triazole is a kind of 5-membered N-heterocycle widely applied in pharmaceutical, pesticide and materials. 1,2,3-Trizole chemistry has stepped into a new era in the fields of organic synthesis and pharmacochemistry since the Cu-catalyzed azide-alkyne dipolar cycloaddition was founded by the Sharpless and Meldal groups in 2002. 4-Monosubstituted 1,2,3-triazole is a noble member in its family owing to the structural merits of facile modifications, leading to novel molecules. The transformations of 4-monosubstituted 1,2,3-triazoles basing on different reaction sites including the N1, N2 and N3 are reviewed. The substrate scope, limitation, and representative mechanism are also discussed.

Cite this article

Baomin Yang , Shuitao Zhang , Xian Dong , Guiping Qin , Yubo Jiang . Advances in the Modifications of 4-Monosubstituted 1,2,3-Triazoles[J]. Acta Chimica Sinica, 2023 , 81(11) : 1577 -1589 . DOI: 10.6023/A23060284

References

[1]
(a) Vitaku E.; Smith D. T.; Njardarson J. T. J. Med. Chem. 2014, 57, 10257.
[1]
(b) Liu X.; Kuang C.; Su C. Acta Chim. Sinica 2022, 80, 1135. (in Chinese)
[1]
( 刘霞, 匡春香, 苏长会, 化学学报, 2022, 80, 1135.)
[2]
(a) Suzuki T.; Ota Y.; Ri M.; Bando M.; Gotoh A.; Itoh Y.; Tsumoto H.; Tatum P. R.; Mizukami T.; Nakagawa H. J. Med. Chem. 2012, 55, 9562.
[2]
(b) Sun L.; Huang T.; Dick A.; Meuser M. E.; Zalloum W. A.; Chen C.-H.; Ding X.; Gao P.; Cocklin S.; Lee K.-H.; Zhan P.; Liu X. Eur. J. Med. Chem. 2020, 190, 112085.
[2]
(c) Othman E. M.; Fayed E. A.; Husseiny E. M.; Abulkhair H. S. Bioorg. Chem. 2022, 123, 105762.
[2]
(d) Xiao L.; Shi D. Chin. J. Org. Chem. 2010, 30, 85. (in Chinese)
[2]
( 肖琳霞, 石德清, 有机化学, 2010, 30, 85.)
[2]
(e) Chen Z.; Jiang Y.; Xu C.; Sun X.; Ma C.; Xia Z.; Zhao H. Molecules 2022, 27, 4928.
[2]
(f) Dong Y.; Hu X.; Duan C.; Liu P.; Liu S.; Lan L.; Chen D.; Ying L.; Su S.; Gong X.; Huang F.; Cao Y. Adv. Mater. 2013, 25, 3683.
[2]
(g) Zhou J.; Lei P.; Geng Y.; He Z.; Li X.; Zeng Q.; Tang A.; Zhou E. J. Mater. Chem. A 2022, 10, 9869.
[3]
(a) Huisgen R. Angew. Chem., Int. Ed. 1963, 2, 565.
[3]
(b) Huisgen R. Angew. Chem., Int. Ed. 1963, 2, 633.
[3]
(c) Huisgen R. Pure Appl. Chem. 1989, 61, 613.
[3]
(d) Qiu K.; Li J.; Ma H.; Zhou W.; Cai Q. Acta Chim. Sinica 2023, 81, 42. (in Chinese)
[3]
( 邱孔茜, 李杰, 马浩文, 周伟, 蔡倩, 化学学报, 2023, 81, 42.)
[4]
(a) Rostovtsev V. V.; Green L. G.; Fokin V. V.; Sharpless K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[4]
(b) Torn?e C. W.; Christensen C.; Meldal M. J. Org. Chem. 2002, 67, 3057.
[4]
(c) Meldal M.; Torn?e C. W. Chem. Rev. 2008, 108, 2952.
[4]
(d) Xu L.; Dong J. Chin. J. Chem. 2020, 38, 414.
[4]
(e) Schulze B.; Schubert U. S. Chem. Soc. Rev. 2014, 43, 2522.
[5]
(a) Liu Z.; Ji H.; Gao W.; Zhu G.; Tong L.; Lei F.; Tang B. Chem. Commun. 2017, 53, 6259.
[5]
(b) Ji J.; Guan C.; Wei Q.; Chen X.; Zhao Y.; Liu S. Org. Lett. 2022, 24, 132.
[5]
(c) Zhu L.; Zhang H.; Wang C.; Chen Z. Chin. J. Org. Chem. 2018, 38, 1052. (in Chinese)
[5]
( 朱莉莉, 张辉, 王春杰, 陈自立, 有机化学, 2018, 38, 1052.)
[6]
(a) Zhang W.; Kuang C.; Yang Q. Chin. J. Org. Chem. 2011, 31, 54. (in Chinese)
[6]
( 张文生, 匡春香, 杨青, 有机化学, 2011, 31, 54.)
[6]
(b) Agalave S. G.; Maujan S. R.; Pore V. S. Chem.-Asian J. 2011, 6, 2696.
[7]
McAllister L. A.; Montgomery J. I.; Abramite J. A.; Reilly U.; Brown M. F.; Chen J. M.; Barham R. A.; Che Y.; Chung S. W.; Menard C. A.; Mark M.-F.; Mullins L. M.; Noe M. C.; Donnell J. P.; Oliver R. M. III; Penzien J. B.; Plummer M.; Price L. M.; Shanmugasundaram V.; Tomaras A. P.; Uccello D. P. Bioorg. Med. Chem. Lett. 2012, 22, 6832.
[8]
Hsu K.-L.; Tsuboi K.; Whitby L. R.; Speers A. E.; Pugh H.; Inloes J.; Cravatt B. F. J. Med. Chem. 2013, 56, 8257.
[9]
Thirumurugan P.; Matosiuk D.; Jozwiak K. Chem. Rev. 2013, 113, 4905.
[10]
Saroha B.; Kumar G.; Kumar R.; Kumari M.; Kumar S. Chem. Biol. Drug Des. 2021, 100, 843.
[11]
Umapathi N.; Jalapathi P.; Raghavender M.; Shankar B. Asian J. Chem. 2021, 33, 2341.
[12]
Natarajan R.; Kesavan Y.; Sivaperuman A.; Subramani A. Curr. Bioact. Compd. 2022, 18, e070322201800.
[13]
(a) Chen Y.; Liu Y.; Petersen J. L.; Shi X. Chem. Commun. 2008, 28, 3254.
[13]
(b) Liu Y.; Yan W.; Chen Y.; Petersen J. L.; Shi X. Org. Lett. 2008, 10, 5389.
[13]
(c) Madadi N. R.; Penthala N. R.; Song L.; Hendrickson H. P.; Crooks P. A. Tetrahedron Lett. 2014, 55, 4207.
[13]
(d) Madadi N. R.; Penthala N. R.; Howk K.; Ketkar A.; Eoff R. L.; Borrelli M. J.; Crooks P. A. Eur. J. Med. Chem. 2015, 103, 123.
[13]
(e) Reddy R. J.; Waheed M.; Karthik T.; Shankar A. New J. Chem. 2018, 42, 980.
[13]
(f) Yang J.; Yin W.; Liu R.; Chu C. Chin. J. Chem. 2012, 30, 2786.
[14]
Wang J.; Yu J.; Chen J.; Jiang Y.; Xiao T. Org. Biomol. Chem. 2021, 19, 6974.
[15]
Zhao S.; Liu J.; Lv Z.; Zhang G.; Xu Z. Eur. J. Med. Chem. 2023, 251, 115254.
[16]
Thottempudi V.; Yin P.; Zhang J.; Parrish D. A.; Shreeve J. M. Chem.-Eur. J. 2014, 20, 542.
[17]
Franco C. A.; da Silva T. I.; Dias M. G.; Ferreira B. W.; de Sousa B. L.; Bousada G. M.; Barreto R. W.; Vaz B. G.; Lima G. S.; Santos M. H. D.; Grossi J. A. S.; Varej?o E. V. V. J. Agric. Food Chem. 2022, 70, 2806.
[18]
(a) Liao Y.; Lu Q.; Chen G.; Yu Y.; Li C.; Huang X. ACS Catal. 2017, 7, 7529.
[18]
(b) Kumar N.; Bhadoria D.; Kumar A. Green Chem. 2021, 23, 7987.
[18]
(c) Fang D.; Zhang Z.-Y.; Shangguan Z.; He Y.; Yu C.; Li T. J. Am. Chem. Soc. 2021, 143, 14502.
[18]
(d) Zeng L.; Lai Z.; Zhang C.; Xie H.; Cui S. Org. Lett. 2020, 22, 2220.
[18]
(e) Duan X.; Zheng N.; Liu G.; Li M.; Wu Q.; Sun X.; Song W. Org. Lett. 2022, 24, 6006.
[18]
(f) Guo W.-T.; Zhu B.-H.; Chen Y.; Yang J.; Qian P.-C.; Deng C.; Ye L.-W.; Li L. J. Am. Chem. Soc. 2022, 144, 6981.
[18]
(g) Zhang X.; Li S.; Yu W.; Xie Y.; Tung C.-H.; Xu Z. J. Am. Chem. Soc. 2022, 144, 6200.
[18]
(h) Qin C.-Q.; Zhao C.; Chen G.-S.; Liu Y.-L. ACS Catal. 2023, 13, 6301.
[18]
(i) Rahul P.; Thomas J.; Dehaen W.; John J. Molecules 2023, 28, 308.
[18]
(j) Wei F.; Wang W.; Ma Y.; Tung C.-H.; Xu Z. Chem. Commun. 2016, 52, 14188.
[18]
(k) Spiteri C.; Moses J. E. Angew. Chem., Int. Ed. 2010, 49, 31.
[19]
Samanta S.; Ravi C.; Rao S. N.; Joshi A.; Adimurthy S. Org. Biomol. Chem. 2017, 15, 9590.
[20]
Yi H.; Chen H.; Bian C.; Tang Z.; Singh A. K.; Qi X.; Yue X.; Lan Y.; Lee J.-F.; Lei A. Chem. Commun. 2017, 53, 6736.
[21]
Li T.; Chen B.-L.; Zhu L.-L.; Chen Z. Tetrahedron Lett. 2020, 61, 151851.
[22]
Chao Z.; Ma M.; Gu Z. Org. Lett. 2020, 22, 6441.
[23]
Berthold D.; Breit B. Org. Lett. 2018, 20, 598.
[24]
Yang Y.-Z.; Song R.-J.; Li J.-H. Org. Lett. 2019, 21, 3228.
[25]
Tiwari V.; Bingham J. T.; Vyas S.; Singh A. Org. Biomol. Chem. 2020, 18, 9044.
[26]
Rai V.; Kavyashree P.; Harmalkar S. S.; Dhuri S. N.; Maddani M. R. Org. Biomol. Chem. 2022, 20, 345.
[27]
Zhang L.; Yi H.; Wang J.; Lei A. J. Org. Chem. 2017, 82, 10704.
[28]
Wu J.; Zhou Y.; Zhou Y.; Chiang C.-W.; Lei A. ACS Catal. 2017, 7, 8320.
[29]
Wu J.; Zhu J.; Yu L.; Yu X.; Li W.; Xie L.; Wu J.; Li Z. Asian J. Org. Chem. 2022, 11, e202200551.
[30]
Tan Z.; Xiang F.; Xu K.; Zeng C. Org. Lett. 2022, 24, 5345.
[31]
Tang Z.-L.; Ouyang X.-H.; Song R.-J.; Li J.-H. Org. Lett. 2021, 23, 1000.
[32]
Wang C.; Ji X.; Deng G.-J.; Huang H. Org. Biomol. Chem. 2022, 20, 1200.
[33]
Beryozkina T. V.; Efimov I. V.; Fabian W. M. F.; Beliaev N. A.; Slepukhin P. A.; Isenov M. L.; Dehaen W.; Lubec G.; Eltsov O. S.; Fan Z.; Thomas J.; Bakulev V. A. Tetrahedron 2015, 71, 6189.
[34]
Ueda S.; Su M.; Buchwald S. L. Angew. Chem., Int. Ed. 2011, 50, 8944.
[35]
Lopes A. B.; Wagner P.; Kümmerle A. E.; Bihel F.; Bourguignon J.-J.; Schmitt M.; Miranda L. S. M. ChemistrySelect 2017, 2, 6544.
[36]
Wen J.; Zhu L.-L.; Bi Q.-W.; Shen Z.-Q.; Li X.-X.; Li X.; Wang Z.; Chen Z. Chem.-Eur. J. 2014, 20, 974.
[37]
Gu C.-X.; Bi Q.-W.; Gao C.-K.; Wen J.; Zhao Z.-G.; Chen Z. Org. Biomol. Chem. 2017, 15, 3396.
[38]
Roshandel S.; Lunn M. J.; Rasul G.; Ravinson D. S. M.; Suri S. C.; Prakash G. K. S. Org. Lett. 2019, 21, 6255.
[39]
Yan W.; Liao T.; Tuguldur O.; Zhong C.; Petersen J. L.; Shi X. Chem.-Asian J. 2011, 6, 2720.
[40]
Bhagat U. K.; Kamaluddin; Peddinti R. K.; Tetrahedron Lett. 2017, 58, 298.
[41]
Bhagat U. K.; Peddinti R. K. J. Org. Chem. 2018, 83, 793.
[42]
Tang S.; Yu J.; Shao Y.; Sun J. Org. Chem. Front. 2021, 8, 278.
[43]
Bhagat U. K.; Kamaluddin; Peddinti R. K. Synthesis 2017, 49, 3985.
[44]
Luo G.; Sun C.; Li Y.; Li X.; Zhao Z. RSC Adv. 2018, 8, 27610.
[45]
Deng X.; Lei X.; Nie G.; Jia L.; Li Y.; Chen Y. J. Org. Chem. 2017, 82, 6163.
[46]
Aruri H.; Singh U.; Kumar M.; Sharma S.; Aithagani S. K.; Gupta V. K.; Mignani S.; Vishwakarma R. A.; Singh P. P. J. Org. Chem. 2017, 82, 1000.
[47]
Gupta S.; Chandna N.; Singh A. K.; Jain N. J. Org. Chem. 2018, 83, 3226.
[48]
Zhang C.; Zheng L.; Yan Q.; Hu Q.; Jia F.; Chen Y. ChemistrySelect 2018, 3, 10277.
[49]
Rajamanickam S.; Saraswat M.; Venkataramani S.; Patel B. K. Chem. Sci. 2021, 12, 15318.
[50]
Zhu L.-L.; Xu X.-Q.; Shi J.-W.; Chen B.-L.; Chen Z. J. Org. Chem. 2016, 81, 3568.
[51]
Wei H.; Hu Q.; Ma Y.; Wei L.; Liu J.; Shi M.; Wang F. Asian J. Org. Chem. 2017, 6, 662.
[52]
Bhagat U. K.; Peddinti R. K. Synlett 2018, 29, 99.
[53]
Zhu L.-L.; Tian L.; Cai B.; Liu G.; Zhang H.; Wang Y. Chem. Commun. 2020, 56, 2979.
[54]
Zhu L.-L.; Tian L.; Sun K.; Li Y.; Liu G.; Cai B.; Zhang H.; Wang Y. J. Org. Chem. 2022, 87, 12963.
[55]
Stivanin M. L.; Fernandes A. A. G.; da Silva A. F.; Okada Jr C. Y.; Jurberg I. D. Adv. Synth. Catal. 2020, 362, 1106.
[56]
Man X. J. A. T. R. H.; Liu Y. C.; Li X. X.; Zhao Z. G. New J. Chem. 2019, 43, 14739.
[57]
Duan H.; Yan W.; Sengupta S.; Shi X. Bioorg. Med. Chem. Lett. 2009, 19, 3899.
[58]
Motornov V.; Latyshev G. V.; Kotovshchikov Y. N.; Lukashev N. V.; Beletskaya I. P. Adv. Synth. Catal. 2019, 361, 3306.
[59]
Yan W.; Wang Q.; Chen Y.; Petersen J. L.; Shi X. Org. Lett. 2010, 12, 3308.
[60]
Yan W.; Ye X.; Weise K.; Petersen J. L.; Shi X. Chem. Commun. 2012, 48, 3521.
[61]
Reddy R. J.; Shankar A.; Waheed M.; Nanubolu J. B. Tetrahedron Lett. 2018, 59, 2014.
[62]
Desai S. P.; Zambri M. T.; Taylor M. S. J. Org. Chem. 2022, 87, 5385.
[63]
Chen Y.; Zhou S.; Ma S.; Liu W.; Pan Z.; Shi X. Org. Biomol. Chem. 2013, 11, 8171.
[64]
Duan S.; Chen Y.; Meng H.; Shan L.; Xu Z.-F.; Li C.-Y. Asian J. Org. Chem. 2021, 10, 224.
[65]
Zhang S.; Li J.; Xiao T.; Yang B.; Jiang Y. Molecules 2022, 27, 7567.
[66]
Grimster N.; Zhang L.; Fokin V. V. J. Am. Chem. Soc. 2010, 132, 2510.
[67]
Wang T.; Tang Z.; Luo H.; Tian Y.; Xu M.; Lu Q.; Li B. Org. Lett. 2021, 23, 6293.
[68]
Motornov V.; Beier P. Org. Lett. 2022, 24, 1958.
[69]
Motornov V.; Beier P. New J. Chem. 2022, 46, 14318.
Outlines

/