Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★
Received date: 2023-05-05
Online published: 2023-08-15
Supported by
College Student Innovation and Entrepreneurship Training Program(S202210487007); National Natural Science Foundation of China(22071069)
Coupled small molecule electrocatalytic oxidation reaction can not only reduce anode overpotential, improve hydrogen evolution reaction (HER) efficiency, but also produce high value-added chemicals, which is an effective strategy to improve the performance of electrocatalytic water splitting. The development of non-noble metal based electrocatalysts with high conductivity and low oxidation potential is the key issue. Herein, Ni3N nanoparticles (Ni3N-NPs) with low oxidation potential and high conductivity were prepared by annealing and nitriding Ni(OH)2 nanosheets precursors. Compared with Ni(OH)2, Ni3N-NPs has a smaller Faraday resistance, a lower oxidation potential, a smaller Tafel slope (29 mV•dec–1), and exhibits the better electrocatalytic oxidation performance towards ethylene glycol (EG). At 1.36 V, the Faraday efficiency of electrocatalytic EG oxidation to formate reached 91.16%. The structure of Ni3N-NPs before and after the electrocatalytic oxidation reaction was characterized in detail by X-ray diffractometer (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that in the electrocatalytic EG oxidation process, the surface of Ni3N-NPs was oxidized into NiOOH, while EG underwent dehydrogenation and oxidation to form formic acid on the catalyst surface, and the NiOOH was synchronously reduced by H and converted into Ni(OH)2. In addition, Ni3N-NPs has good universality for electrocatalytic oxidation of small organic molecules.
Key words: electrocatalysis; water splitting; ethylene glycol; Ni(OH)2; Ni3N
Zhenhong Yang , Xiaojuan Gan , Shuzhe Wang , Junyuan Duan , Tianyou Zhai , Youwen Liu . Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★[J]. Acta Chimica Sinica, 2023 , 81(11) : 1471 -1477 . DOI: 10.6023/A23050202
[1] | Chatenet M.; Pollet B. G.; Dekel D. R.; Dionigi F.; Deseure J.; Millet P.; Braatz R. D.; Bazant M. Z.; Eikerling M.; Staffell I.; Balcombe P.; Shao-Horn Y.; Schafer H. Chem. Soc. Rev. 2022, 51, 4583. |
[2] | Zhan F.; Mebrahtu C.; Liao L. F.; Palkovits R.; Beine A. K. J. Energy Chem. 2022, 69, 301. |
[3] | Jiao Y.; Zheng Y.; Jaroniec M.; Qiao S. Z. Chem. Soc. Rev. 2015, 44, 2060. |
[4] | Li R.; Xiang K.; Peng Z. K.; Zou Y. Q.; Wang S. Y. Adv. Energy Mater. 2021, 11, 2102292. |
[5] | Wang W. B.; Wen Q. L.; Liu Y. W.; Zhai T. Y. Acta Chim. Sinica 2020, 78, 1185. (in Chinese) |
[5] | ( 王文彬, 温群磊, 刘友文, 翟天佑, 化学学报, 2020, 78, 1185.) |
[6] | Wang Z. H.; Ma C.; Fang P.; Xu H. C.; Mei T. S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese) |
[6] | ( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) |
[7] | Wang W. B.; Zhu Y. B.; Wen Q. L.; Wang Y. T.; Xia J.; Li C. C.; Chen M. W.; Liu Y. W.; Li H. Q.; Wu H. A.; Zhai T. Y. Adv. Mater. 2019, 31, 1900582. |
[8] | Si D.; Xiang B. Y.; Chen L. S.; Shi J. L. Chem Catal. 2021, 1, 941. |
[9] | Wu K. H.; Zhou Y. W.; Ma X. Y.; Ding C.; Cai W. B. Acta Chim. Sinica 2018, 76, 292. (in Chinese) |
[9] | ( 吴匡衡, 周亚威, 马宪印, 丁辰, 蔡文斌, 化学学报, 2018, 76, 292.) |
[10] | Xin L.; Zhang Z. Y.; Qi J.; Chadderdon D.; Li W. Z. Appl. Catal. B Environ. 2012, 125, 85. |
[11] | Zhang N. N.; Zou Y. Q.; Tao L.; Chen W.; Zhou L.; Liu Z. J.; Zhou B.; Huang G.; Lin H. Z.; Wang S. Y. Angew. Chem., Int. Ed. 2019, 58, 15895. |
[12] | Xu Z. H.; Rao L. X.; Song H. Y.; Yan Z. X.; Zhang L. J.; Yang S. B. Chin. J. Catal. 2017, 38, 305. |
[13] | Chen Z. D.; Chen Z. X.; Tang J. L.; Xu J.; Wang W. C.; Cao J. Y. Acta Chim. Sinica 2012, 70, 241. (in Chinese) |
[13] | ( 陈智栋, 陈转霞, 汤佳丽, 许娟, 王文昌, 曹剑瑜, 化学学报, 2012, 70, 241.) |
[14] | Qin Y. C.; Zhang W. L.; Wang F. Q.; Li J. J.; Ye J. Y.; Sheng X.; Li C. X.; Liang X. Y.; Liu P.; Wang X. P.; Zheng X.; Ren Y. L.; Xu C. L.; Zhang Z. C. Angew. Chem., Int. Ed. 2022, 134, e202200899. |
[15] | Yan H.; Yao S.; Wang J. Y.; Zhao S. M.; Sun Y. H.; Liu M. Y.; Zhou X.; Zhang G. Y.; Jin X.; Feng X.; Liu Y. B.; Chen X. B.; Chen D.; Yang C. H. Appl. Catal., B 2021, 284, 119803. |
[16] | Wang W. B.; Wang Y. T.; Yang R. O.; Wen Q. L.; Liu Y. W.; Jiang Z.; Li H. Q.; Zhai T. Y. Angew. Chem., Int. Ed. 2020, 59, 16974. |
[17] | Wen Q. L.; Lin Y.; Yang Y.; Gao R. J.; Ouyang N. Q.; Ding D. F.; Liu Y. W.; Zhai T. Y. ACS Nano 2022, 16, 9572. |
[18] | Wen Q. L.; Wang S. Z.; Wang R. W.; Huang D. J.; Fang J. K.; Liu Y. W.; Zhai T. Y. Nano Res. 2023, 16, 2286. |
[19] | Yong W. L.; Yang X. P.; Hou C. M.; Li B. J.; Gao H. T.; Lin J. H.; Luo X. L. Appl. Catal., B 2019, 259, 118020. |
/
〈 |
|
〉 |