Article

Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol

  • Zhenhong Yang ,
  • Xiaojuan Gan ,
  • Shuzhe Wang ,
  • Junyuan Duan ,
  • Tianyou Zhai ,
  • Youwen Liu
Expand
  • State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
These authors contributed equally to this work
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-05

  Online published: 2023-08-15

Supported by

College Student Innovation and Entrepreneurship Training Program(S202210487007); National Natural Science Foundation of China(22071069)

Abstract

Coupled small molecule electrocatalytic oxidation reaction can not only reduce anode overpotential, improve hydrogen evolution reaction (HER) efficiency, but also produce high value-added chemicals, which is an effective strategy to improve the performance of electrocatalytic water splitting. The development of non-noble metal based electrocatalysts with high conductivity and low oxidation potential is the key issue. Herein, Ni3N nanoparticles (Ni3N-NPs) with low oxidation potential and high conductivity were prepared by annealing and nitriding Ni(OH)2 nanosheets precursors. Compared with Ni(OH)2, Ni3N-NPs has a smaller Faraday resistance, a lower oxidation potential, a smaller Tafel slope (29 mV•dec–1), and exhibits the better electrocatalytic oxidation performance towards ethylene glycol (EG). At 1.36 V, the Faraday efficiency of electrocatalytic EG oxidation to formate reached 91.16%. The structure of Ni3N-NPs before and after the electrocatalytic oxidation reaction was characterized in detail by X-ray diffractometer (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that in the electrocatalytic EG oxidation process, the surface of Ni3N-NPs was oxidized into NiOOH, while EG underwent dehydrogenation and oxidation to form formic acid on the catalyst surface, and the NiOOH was synchronously reduced by H and converted into Ni(OH)2. In addition, Ni3N-NPs has good universality for electrocatalytic oxidation of small organic molecules.

Cite this article

Zhenhong Yang , Xiaojuan Gan , Shuzhe Wang , Junyuan Duan , Tianyou Zhai , Youwen Liu . Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol[J]. Acta Chimica Sinica, 2023 , 81(11) : 1471 -1477 . DOI: 10.6023/A23050202

References

[1]
Chatenet M.; Pollet B. G.; Dekel D. R.; Dionigi F.; Deseure J.; Millet P.; Braatz R. D.; Bazant M. Z.; Eikerling M.; Staffell I.; Balcombe P.; Shao-Horn Y.; Schafer H. Chem. Soc. Rev. 2022, 51, 4583.
[2]
Zhan F.; Mebrahtu C.; Liao L. F.; Palkovits R.; Beine A. K. J. Energy Chem. 2022, 69, 301.
[3]
Jiao Y.; Zheng Y.; Jaroniec M.; Qiao S. Z. Chem. Soc. Rev. 2015, 44, 2060.
[4]
Li R.; Xiang K.; Peng Z. K.; Zou Y. Q.; Wang S. Y. Adv. Energy Mater. 2021, 11, 2102292.
[5]
Wang W. B.; Wen Q. L.; Liu Y. W.; Zhai T. Y. Acta Chim. Sinica 2020, 78, 1185. (in Chinese)
[5]
( 王文彬, 温群磊, 刘友文, 翟天佑, 化学学报, 2020, 78, 1185.)
[6]
Wang Z. H.; Ma C.; Fang P.; Xu H. C.; Mei T. S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese)
[6]
( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.)
[7]
Wang W. B.; Zhu Y. B.; Wen Q. L.; Wang Y. T.; Xia J.; Li C. C.; Chen M. W.; Liu Y. W.; Li H. Q.; Wu H. A.; Zhai T. Y. Adv. Mater. 2019, 31, 1900582.
[8]
Si D.; Xiang B. Y.; Chen L. S.; Shi J. L. Chem Catal. 2021, 1, 941.
[9]
Wu K. H.; Zhou Y. W.; Ma X. Y.; Ding C.; Cai W. B. Acta Chim. Sinica 2018, 76, 292. (in Chinese)
[9]
( 吴匡衡, 周亚威, 马宪印, 丁辰, 蔡文斌, 化学学报, 2018, 76, 292.)
[10]
Xin L.; Zhang Z. Y.; Qi J.; Chadderdon D.; Li W. Z. Appl. Catal. B Environ. 2012, 125, 85.
[11]
Zhang N. N.; Zou Y. Q.; Tao L.; Chen W.; Zhou L.; Liu Z. J.; Zhou B.; Huang G.; Lin H. Z.; Wang S. Y. Angew. Chem., Int. Ed. 2019, 58, 15895.
[12]
Xu Z. H.; Rao L. X.; Song H. Y.; Yan Z. X.; Zhang L. J.; Yang S. B. Chin. J. Catal. 2017, 38, 305.
[13]
Chen Z. D.; Chen Z. X.; Tang J. L.; Xu J.; Wang W. C.; Cao J. Y. Acta Chim. Sinica 2012, 70, 241. (in Chinese)
[13]
( 陈智栋, 陈转霞, 汤佳丽, 许娟, 王文昌, 曹剑瑜, 化学学报, 2012, 70, 241.)
[14]
Qin Y. C.; Zhang W. L.; Wang F. Q.; Li J. J.; Ye J. Y.; Sheng X.; Li C. X.; Liang X. Y.; Liu P.; Wang X. P.; Zheng X.; Ren Y. L.; Xu C. L.; Zhang Z. C. Angew. Chem., Int. Ed. 2022, 134, e202200899.
[15]
Yan H.; Yao S.; Wang J. Y.; Zhao S. M.; Sun Y. H.; Liu M. Y.; Zhou X.; Zhang G. Y.; Jin X.; Feng X.; Liu Y. B.; Chen X. B.; Chen D.; Yang C. H. Appl. Catal., B 2021, 284, 119803.
[16]
Wang W. B.; Wang Y. T.; Yang R. O.; Wen Q. L.; Liu Y. W.; Jiang Z.; Li H. Q.; Zhai T. Y. Angew. Chem., Int. Ed. 2020, 59, 16974.
[17]
Wen Q. L.; Lin Y.; Yang Y.; Gao R. J.; Ouyang N. Q.; Ding D. F.; Liu Y. W.; Zhai T. Y. ACS Nano 2022, 16, 9572.
[18]
Wen Q. L.; Wang S. Z.; Wang R. W.; Huang D. J.; Fang J. K.; Liu Y. W.; Zhai T. Y. Nano Res. 2023, 16, 2286.
[19]
Yong W. L.; Yang X. P.; Hou C. M.; Li B. J.; Gao H. T.; Lin J. H.; Luo X. L. Appl. Catal., B 2019, 259, 118020.
Outlines

/