Article

Ultra-Long Organic Room Temperature Phosphorescence of Phthalic Acid Derivative Modified Polymer

  • Ye Tian ,
  • Duanhui Si ,
  • Shuiying Gao ,
  • Rong Cao
Expand
  • a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
    b University of the Chinese Academy of Sciences, Beijing 100049, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-22

  Online published: 2023-08-24

Supported by

The National Key Research and Development Program of China(2021YFA1501500); The National Natural Science Foundation of China(22033008); The National Natural Science Foundation of China(22220102005); The National Natural Science Foundation of China(22201286); The National Natural Science Foundation of China(22171265); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103)

Abstract

Ultra-long organic room temperature phosphorescent materials (UORTP) have attracted more and more attention in the fields of imaging, anti-counterfeiting and information encryption due to their unique long life and abundant excited state characteristics. Polymer materials with UORTP are gradually coming into people's eyes because of their machinability, transparency and flexibility. In this work, a series of polymers with UORTP phosphorescent properties were synthesized by modifying phthalic acid molecules on polyethylenimide (PEI) molecular chains through amide bonds using phthalic acid derivatives (isophthalic acid, IPA/terephthalic acid, TPA/phthalic acid, PA) as phosphorescent units. Fourier transform infrared spectrum and X-ray photoelectron spectroscopy demonstrated that the phthalic acid molecules were successfully modified on polyethylenimide. 13C Nuclear magnetic resonance illustrates the structure of the phthalic acid remained. Density functional theory (DFT) calculation proved the existence of energy transfer effect between phthalic acid and polyethylenimide, which explained the mechanism of long life phosphorescence. By changing the content of phthalic acid molecules, these polymers can achieve a long-lived lifetime of 1.51 s and an afterglow of 6 s. This is because the rigid environment constructed by the increasing intramolecular hydrogen bond limits the non-radiative transition with the increase of phosphor molecule content. The maximum lifetimes of IPA-PEI, TPA-PEI and PA-PEI were 1.51 s, 0.27 s and 0.03 s, which were 1.5 times, 13.8 times and 47.6 times longer than those of IPA (1 s), TPA (19.6 ms) and PA (0.63 ms), respectively. Thermogravimetry confirmed that the polymers have good thermal stability and the cyclic variable-temperature curves of phosphorescence intensity and cyclic variable-temperature curves of phosphorescent lifetime also illustrate the polymers’ thermal stability. In addition, we further developed application of these polymers in the field of temperature sensing based on the change of phosphorescence intensity with temperature, which the relative sensitivity is up to 1.5%•K-1. This work provides a novel way for designing smart luminescent polymers with long-lived room temperature phosphorescence and adjustable afterglow.

Cite this article

Ye Tian , Duanhui Si , Shuiying Gao , Rong Cao . Ultra-Long Organic Room Temperature Phosphorescence of Phthalic Acid Derivative Modified Polymer[J]. Acta Chimica Sinica, 2023 , 81(9) : 1129 -1134 . DOI: 10.6023/A23040157

References

[1]
(a) Lin, F.; Wang, H.; Cao, Y.; Yu, R.; Liang, G.; Huang, H.; Mu, Y.; Yang, Z.; Chi, Z. Adv. Mater. 2022, 34, 2108333.
[1]
(b) Liu, X.; Wang, Y.; Li, X.; Yi, Z.; Deng, R.; Liang, L.; Xie, X.; Loong, D. T. B.; Song, S.; Fan, D.; All, A. H.; Zhang, H.; Huang, L.; Liu, X. Nat. Commun. 2017, 8, 899.
[1]
(c) Maldiney, T.; Bessiere, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. Nat. Mater. 2014, 13, 418.
[1]
(d) Pan, Z.; Lu, Y.-Y.; Liu, F. Nat. Mater. 2012, 11, 58.
[1]
(e) Tian, Y.; Tong, X.; Li, J.; Gao, S.; Cao, R. Chin. J. Chem. 2022, 40, 487.
[1]
(f) Zhang, R.; Gao, S.; Cao, R. Chin. Chem. Lett. 2022, 33, 4013.
[1]
(g) Liu, Y.; Ma, L.; Wang, Q.; Ma, X. Acta Chim. Sinica 2023, 81, 445. (in Chinese)
[1]
(刘懿玮, 马良伟, 王巧纯, 马骧, 化学学报, 2023, 81, 445.)
[1]
(h) Ma, X.; Ye, Z. Z.; Yin, K. Fine Chemicals 2023, 40, 497. (in Chinese)
[1]
(马骧, 叶子湛, 尹扩, 精细化工, 2023, 40, 497.)
[2]
(a) Au, V. K. M.; Wong, K. M. C.; Tsang, D. P. K.; Chan, M.-Y.; Zhu, N.; Yam, V. W. W. J. Am. Chem. Soc. 2010, 132, 14273.
[2]
(b) Evans, R. C.; Douglas, P.; Winscom, C. J. Coord. Chem. Rev. 2006, 250, 2093.
[2]
(c) Weitz, E. A.; Chang, J. Y.; Rosenfield, A. H.; Pierre, V. C. J. Am. Chem. Soc. 2012, 134, 16099.
[2]
(d) Whittemore, T. J.; White, T. A.; Turro, C. J. Am. Chem. Soc. 2018, 140, 229.
[3]
(a) Liu, B. T.; Liu, E. P.; Sa, R. J.; Liu, T. F. Adv. Opt. Mater. 2020, 8, 2000281.
[3]
(b) Cai, S.; Shi, H.; Tian, D.; Ma, H.; Cheng, Z.; Wu, Q.; Gu, M.; Huang, L.; An, Z.; Peng, Q.; Huang, W. Adv. Funct. Mater. 2018, 28, 1870060.
[3]
(c) Jiang, K.; Wang, Y.; Cai, C.; Lin, H. Adv. Mater. 2018, 30, 1800783.
[4]
(a) Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Nature Chemistry 2011, 3, 415.
[4]
(b) Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.; Lu, P.; Wang, C. L.; Liu, Y.; Wang, Z. M.; Zheng, Q.; Sun, J. Z.; Ma, Y. G.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 6090.
[5]
(a) Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z. Adv. Mater. 2017, 29, 1606829.
[5]
(b) Ma, L.; Ma, X. Sci. China Chem. 2023, 66, 304.
[6]
Hirata, S.; Totani, K.; Zhang, J.; Yamashita, T.; Kaji, H.; Marder, S. R.; Watanabe, T.; Adachi, C. Adv. Funct. Mater. 2013, 23, 3386.
[7]
Lee, D.; Bolton, O.; Kim, B. C.; Youk, J. H.; Takayama, S.; Kim, J. J. Am. Chem. Soc. 2013, 135, 6325.
[8]
(a) Kim, J.; Bolton, O.; Lee, K.; Kim, H.-J.; Lin, K. J. Am. Chem. Soc. 2011, 242, 533.
[8]
(b) Wu, H.; Chi, W.; Chen, Z.; Liu, G.; Gu, L.; Bindra, A. K.; Yang, G.; Liu, X.; Zhao, Y. Adv. Funct. Mater. 2019, 29, 1807243.
[8]
(c) Zhang, Z. Y.; Chen, Y.; Liu, Y. Angew. Chem. Int. Ed. 2019, 58, 6028.
[9]
(a) Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.
[9]
(b) Bian, L.; Shi, H.; Wang, X.; Ling, K.; Ma, H.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Wu, Q.; Gan, N.; Xu, X.; An, Z.; Huang, W. J. Am. Chem. Soc. 2018, 140, 10734.
[9]
(c) Chen, B.; Zhang, X.; Wang, Y.; Miao, H.; Zhang, G. Chem. Asian J. 2019, 14, 751.
[10]
(a) Gu, L.; Shi, H.; Miao, C.; Wu, Q.; Cheng, Z.; Cai, S.; Gu, M.; Ma, C.; Yao, W.; Gao, Y.; An, Z.; Huang, W. J. Mater. Chem. C 2018, 6, 226.
[10]
(b) Chen, Y.; He, J.; Hu, C.; Zhang, H.; Lei, B.; Liu, Y. J. Mater. Chem. C 2017, 5, 6243.
[11]
(a) Su, Y.; Phua, S. Z. F.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W. Q.; Ong, W. K.; Yang, C.; Zhao, Y. Sci. Adv. 2018, 4, 9732.
[11]
(b) Xu, Q.; Ma, L.; Lin, X.; Wang, Q.; Ma, X. Chin. Chem. Lett. 2022, 33, 2965.
[12]
(a) Ma, X.; Xu, C.; Wang, J.; Tian, H. Angew. Chem. Int. Ed. 2018, 57, 10854.
[12]
(b) Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T. A.; Taema, A.; Ono, T.; Sugimoto, M.; Mizuno, M. Adv. Funct. Mater. 2018, 28, 1707369.
[13]
(a) Hu, R.; Leung, N. L. C.; Tang, B. Z. Chem. Soc. Rev. 2014, 43, 4494.
[13]
(b) Han, T.; Jim, C. K. W.; Lam, J. W. Y.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 877. (in Chinese)
[13]
(韩婷, 詹嘉慧, 林荣业, 唐本忠, 化学学报, 2016, 74, 877.)
[14]
Zhou, B.; Yan, D. Adv. Funct. Mater. 2019, 29, 1807599.
[15]
Gong, Y. Y.; Zhao, L. F.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y. M.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.
[16]
Bian, L.; Shi, H.; Wang, X.; Ling, K.; Ma, H.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Wu, Q.; Gan, N.; Xu, X.; An, Z.; Huang, W. J. Am. Chem. Soc. 2018, 140, 10734.
[17]
(a) Feng, J. F.; Gao, S. Y.; Liu, T. F.; Shi, J. L.; Cao, R. ACS Appl. Mater. Interfaces 2018, 10, 6014.
[17]
(b) Feng, J. F.; Gao, S. Y.; Shi, J. L.; Liu, T. F.; Cao, R. Inorg. Chem. 2018, 57, 2447.
[17]
(c) Feng, J. F.; Liu, T. F.; Shi, J. L.; Gao, S. Y.; Cao, R. ACS Appl. Mater. Interfaces 2018, 10, 20854.
[17]
(d) Yang, X.; Yi, J.; Wang, T.; Feng, Y.; Wang, J.; Yu, J.; Zhang, F.; Jiang, Z.; Lv, Z.; Li, H.; Huang, T.; Si, D.; Wang, X.; Cao, R.; Chen, X. Adv. Mater. 2022, 34, 2201768.
[18]
(a) Liu, X.; Fu, W. T.; Bouwman, E. Chem. Commun. 2016, 52, 6926.
[18]
(b) Feng, J. F.; Gao, S. Y.; Shi, J.; Liu, T. F.; Cao, R. Inorg. Chem. 2018, 57, 2447.
[18]
(c) Cui, Y. J.; Song, R. J.; Yu, J. C.; Liu, M.; Wang, Z. Q.; Wu, C. D.; Yang, Y.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Adv. Mater. 2015, 27, 1420.
[18]
(d) Cui, Y. J.; Xu, H.; Yue, Y. F.; Guo, Z. Y.; Yu, J. C.; Chen, Z. X.; Gao, J. K.; Yang, Y.; Qian, G. D.; Chen, B. L. J. Am. Chem. Soc. 2012, 134, 3979.
Outlines

/