Article

Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum

  • Jinjing Liu ,
  • Na Yang ,
  • Li Li ,
  • Zidong Wei
Expand
  • a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331
    b School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731
These authors contributed equally to this work
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-10

  Online published: 2023-08-28

Supported by

National Key Research and Development Program of China(2021YFA1501000); National Natural Science Foundation of China(52021004)

Abstract

Improving the cathodic oxygen reduction reaction (ORR) activity faces significant challenges due to the linear scaling relationship and disparate adsorption strengths of the intermediate species, *OH and *OOH. This causes the ORR cannot proceed under nearly thermodynamic equilibrium potential, leading to low reaction kinetics compared to the anodic hydrogen oxidation reaction. Even with the use of optimal catalysts like Pt, the theoretical overpotential remains at around 0.45 V, because of the excessively strong *OH adsorption and weak *OOH adsorption, with *OH desorption serving as the potential determining step (PDS). In this study, we aim to enhance the intrinsic catalytic activity of ORR by constructing a three-dimensional spatial geometric structure utilizing a Pt crystalline model with multi-low index surface consisting of (100)-(110)-(111). The density functional theory calculations are employed to investigate the impact of a concave and convex arrangement formed by interlacing polycrystalline surfaces on the adsorption of *OH and *OOH. The results indicate that the investigated spatial configuration can break the linear scaling relationship between *OH and *OOH adsorption and allow for independent optimization of their adsorption strengths, thereby reducing the originally theoretical overpotential. The adsorption of intermediates reveals that the coordination unsaturation of active sites can be utilized as an indicator of the effect of the spatial geometric structure on species adsorption. The adsorption strength of the active site spatial structure follows the order of “concave”<“convex”≤“flat”, with the concave sites of Pt(111)-(100) exhibiting the most optimal adsorption strength for both *OH and *OOH. The 4e associative mechanism on single sites further reveals that the concave active sites located at Pt(111)-(100) play a significant role in independently regulating the adsorption of intermediate species and show higher catalytic activity than Pt model with single-low index surface. This is due to the minimal coordination unsaturation, which allows for a balance of *OOH and *OH adsorption strengths and then regulates the protonation of *O as the PDS. On the other hand, the 4e dissociative mechanism demonstrates that dual active sites can further enhance intrinsic catalytic activity compared to single active sites. Specifically, the “flat-concave” dual active sites at Pt(111)-(100) are shown to significantly reduce the theoretical overpotential to 0.27 V. This polycrystalline faceted catalyst with a concave-convex spatial structure is highly promising for use in other reactions that require the selective modulation of multispecies adsorption and the enhancement of intrinsic catalytic activity, particularly those that exhibit a linear scaling relationship.

Cite this article

Jinjing Liu , Na Yang , Li Li , Zidong Wei . Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum[J]. Acta Chimica Sinica, 2023 , 81(11) : 1478 -1485 . DOI: 10.6023/A23050221

References

[1]
Fan J.; Chen M.; Zhao Z.; Zhang Z.; Ye S.; Xu S.; Wang H.; Li H. Nat. Energy 2021, 6, 475.
[2]
Jiao K.; Xuan J.; Du Q.; Bao Z.; Xie B.; Wang B.; Zhao Y.; Fan L.; Wang H.; Hou Z.; Huo S.; Brandon N. P.; Yin Y.; Guiver M. D. Nature 2021, 595, 361.
[3]
Majlan E. H.; Rohendi D.; Daud W. R. W.; Husaini T.; Haque M. A. Renewable Sustainable Energy Rev. 2018, 89, 117.
[4]
Yan S.; Jiao L.; He C.; Jiang H. Acta Chim. Sinica 2022, 80, 1084. (in Chinese)
[4]
( 闫绍兵, 焦龙, 何传新, 江海龙, 化学学报, 2022, 80, 1084.)
[5]
Geng Y.; Lin X.; Sun Y.; Li H.; Qin Y.; Li C. Acta Chim. Sinica 2022, 80, 748. (in Chinese)
[5]
( 耿元昊, 林小秋, 孙亚昕, 李惠雨, 秦悦, 李从举, 化学学报, 2022, 80, 748.)
[6]
Wang J.; Ding W.; Wei Z. Acta Phys. Chim. Sin. 2021, 37, 2009094. (in Chinese)
[6]
( 王健, 丁炜, 魏子栋, 物理化学学报, 2021, 37, 2009094.)
[7]
Antoine O.; Bultel Y.; Durand R. J. Electroanal. Chem. 2001, 499, 85.
[8]
Dong J.-C.; Zhang X.-G.; Briega Martos V.; Jin X.; Yang J.; Chen S.; Yang Z.-L.; Wu D.-Y.; Feliu J. M.; Williams C. T.; Tian Z.-Q.; Li J. F. Nat. Energy 2018, 4, 60.
[9]
Eslamibidgoli M. J.; Huang J.; Kadyk T.; Malek A.; Eikerling M. Nano Energy 2016, 29, 334.
[10]
Kulkarni A.; Siahrostami S.; Patel A.; N?rskov J. K. Chem. Rev. 2018, 118, 2302.
[11]
Norskov J. K.; Rossmeisl J.; Logadottir A.; Lindqvist L.; Kitchin J. R.; Bligaard T.; Jonsson H. J. Phys. Chem. B 2004, 108, 17886.
[12]
Bu L.; Ding J.; Guo S.; Zhang X.; Su D.; Zhu X.; Yao J.; Guo J.; Lu G.; Huang X. Adv. Mater. 2015, 27, 7204.
[13]
Luo M.; Sun Y.; Zhang X.; Qin Y.; Li M.; Li Y.; Li C.; Yang Y.; Wang L.; Gao P.; Lu G.; Guo S. Adv. Mater. 2018, 30, 1705515.
[14]
Wang X. X.; Sokolowski J.; Liu H.; Wu G. Chin. J. Catal. 2020, 41, 739.
[15]
Yao Z.; Yuan Y.; Cheng T.; Gao L.; Sun T.; Lu Y.; Zhou Y. G.; Galindo P. L.; Yang Z.; Xu L.; Yang H.; Huang H. Nano Lett. 2021, 21, 9354.
[16]
Hu Y.; Guo X.; Shen T.; Zhu Y.; Wang D. ACS Catal. 2022, 12, 5380.
[17]
Li Z.; Li B.; Hu Y.; Wang S.; Yu C. Mater. Adv. 2022, 3, 779.
[18]
Stamenkovic V.; Mun B. S.; Mayrhofer K. J.; Ross P. N.; Markovic N. M.; Rossmeisl J.; Greeley J.; Norskov J. K. Angew. Chem., Int. Ed. 2006, 45, 2897.
[19]
Stamenkovic V. R.; Mun B. S.; Arenz M.; Mayrhofer K. J.; Lucas C. A.; Wang G.; Ross P. N.; Markovic N. M. Nat. Mater. 2007, 6, 241.
[20]
Wang S.; Xu W.; Zhu Y.; Luo Q.; Zhang C.; Tang S.; Du Y. ACS Appl. Mater. Interfaces 2020, 13, 827.
[21]
Wang Z.; Yao X.; Kang Y.; Miao L.; Xia D.; Gan L. Adv. Funct. Mater. 2019, 29, 19029.
[22]
Zeng W.-J.; Wang C.; Yan Q.-Q.; Yin P.; Tong L.; Liang H.-W. Nat. Commun. 2022, 13, 7654.
[23]
Li J.; Feng X.; Wei Z. J. Electrochem. 2018, 24, 589. (in Chinese)
[23]
( 李静, 冯欣, 魏子栋, 电化学, 2018, 24, 589.)
[24]
He T.; Wang W.; Shi F.; Yang X.; Li X.; Wu J.; Yin Y.; Jin M. Nature 2021, 598, 76.
[25]
Gamboaaldeco M. E.; Herrero E.; Zelenay P. S.; Wieckowski A. J. Electroanal. Chem. 1993, 348, 451.
[26]
Markovic N. M.; Adzic R. R.; Cahan B. D.; Yeager E. B. J. Electroanal. Chem. 1994, 377, 249.
[27]
Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; N?rskov J. K.; Jaramillo T. F. Science 2017, 355, 146.
[28]
Wang C.; Daimon H.; Lee Y.; Kim J.; Sun S. J. Am. Chem. Soc. 2007, 129, 6974.
[29]
Yu T.; Kim D. Y.; Zhang H.; Xia Y. Angew. Chem., Int. Ed. 2011, 50, 2773.
[30]
Corona B.; Howard M.; Zhang L.; Henkelman G. J. Chem. Phys. 2016, 145, 244708.
[31]
Dang D.; Zhang L.; Zeng X.-Y.; Tian X.-L.; Qu C.; Nan H. X.; Shu T.; Hou S. Y.; Yang L. J.; Zeng J. H.; Liao S. J. J. Power Sources 2017, 355, 83.
[32]
Pan Y. T.; Li D. G.; Sharma S.; Wang C. Y.; Zachman M. J.; Wegener E. C.; Kropf A. J.; Kim Y. S.; Myers D. J.; Peterson A. A.; Cullen D. A.; Spendelow J. S. Chem. Catal. 2022, 2, 3559.
[33]
Wang D.; Xin H. L.; Hovden R.; Wang H.; Yu Y.; Muller D. A.; DiSalvo F. J.; Abruna H. D. Nat. Mater. 2013, 12, 81.
[34]
Zhang G.; Shao Z. G.; Lu W.; Li G.; Liu F.; Yi B. Electrochem. Commun. 2012, 22, 145.
[35]
Chang Q.-W.; Xiao F.; Xu Y.; Shao M.-H. Acta Phys. -Chim. Sin. 2017, 33, 9. (in Chinese)
[35]
( 常乔婉, 肖菲, 徐源, 邵敏华, 物理化学学报, 2017, 33, 9.)
[36]
Zhu H.; Luo M.-C.; Cai Y.-Z.; Sun Z.-N. Acta Phys. -Chim. Sin. 2016, 32, 2462. (in Chinese)
[36]
( 朱红, 骆明川, 蔡业政, 孙照楠, 物理化学学报, 2016, 32, 2462.)
[37]
Liu J.; Liu H.; Chen H.; Du X.; Wang W. Adv. Sci. 2019, 7, 1901614.
[38]
Sours T.; Patel A.; Norskov J.; Siahrostami S.; Kulkarni A. J. Phys. Chem. Lett. 2020, 11, 10029.
[39]
Lee D. G.; Kim S. H.; Lee H. H.; Shin S.; Lee J.; Joo S. H.; Lee Y.; Kwak S. K.; Song H. K. ACS Catal. 2021, 11, 12712.
[40]
Wan H.; ?stergaard T. M.; Arnarson L.; Rossmeisl J. ACS Sustainable Chem. Eng. 2018, 7, 611.
[41]
Zou W.; Lu R.; Liu X.; Xiao G.; Liao X.; Wang Z.; Zhao Y. J. Mater. Chem. A 2022, 10, 9150.
[42]
Zheng X.; Li L.; Li J.; Wei Z. Phys. Chem. Chem. Phys. 2019, 21, 3242.
[43]
Zhang Q.; Asthagiri A. Catal. Today 2019, 323, 35.
[44]
Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I. B.; Norskov J. K.; Jaramillo T. F. Science 2017, 355, 1.
[45]
Xu H.-X.; Cheng D.-J.; Cao D.-P.; Zeng X.-C. Nat. Catal. 2018, 1, 339.
[46]
Zhou Y.-Z.; Lu R.-H.; Tao X.-F.; Qiu Z.-J.; Chen G.-B.; Yang J.; Zhao Y.; Feng X.-L.; Müllen K. J. Am. Chem. Soc. 2023, 145, 3647.
Outlines

/