Perspective

Research Progress of Active Colloidal Motors and Their Application Perspective in Electromagnetic Wave Absorption

  • Jing Zheng ,
  • Jinkun Liu ,
  • Chunyi Luo ,
  • Guochao Zeng ,
  • Guanglei Wu ,
  • Xu Hou
Expand
  • a College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
    b College of Materials Science and Engineering, Qingdao University, Qingdao 266071
    c State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005
    d College of Physical Science and Technology, Xiamen University, Xiamen 361005
    e Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102
Dedicated to the 90th anniversary of Acta Chimica Sinica.
These authors contributed equally to this work

Received date: 2023-04-30

  Online published: 2023-09-12

Supported by

National Natural Science Foundation of China(52025132); National Natural Science Foundation of China(21621091); National Natural Science Foundation of China(22021001); National Natural Science Foundation of China(22121001); National Natural Science Foundation of China(22275207); National Natural Science Foundation of China(22275156); National Natural Science Foundation of China(T2241022); the Natural Science Foundation of Fujian Province(2022J02059); 111 Project(B17027); 111 Project(B16029); Fundamental Research Funds for the Central Universities of China(20720220019); Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2022070601); Tencent Foundation(XPLORER PRIZE)

Abstract

Active colloidal motors are micro- or nanoparticles that can move actively and perform complex tasks at the micro- or nanoscale. They have great potential for various applications, such as environmental remediation, biomedical applications and micro- and nanomanufacturing. The development and latest research progress of active colloidal motors are reviewed, their driving mechanisms in different environments are discussed, and the development of new colloidal motors and their applications in different fields are explored. Finally, the perspective on the possible application of active colloidal motors in the field of electromagnetic wave absorption, including the mechanism of action, possible preparation strategies for electromagnetic wave absorption, and their potential performance and new functional applications are presented.

Cite this article

Jing Zheng , Jinkun Liu , Chunyi Luo , Guochao Zeng , Guanglei Wu , Xu Hou . Research Progress of Active Colloidal Motors and Their Application Perspective in Electromagnetic Wave Absorption[J]. Acta Chimica Sinica, 2023 , 81(10) : 1394 -1401 . DOI: 10.6023/A23040190

References

[1]
Li, J.; Esteban-Fernández de ávila, B.; Gao, W.; Zhang, L.; Wang, J. Sci. Robot. 2017, 2, eaam6431.
[2]
Yang, Q.; Xu, L.; Zhong, W.; Yan, Q.; Gao, Y.; Hong, W.; She, Y.; Yang, G. Adv. Intell. Syst. 2020, 2, 2000049.
[3]
Guo, N.; Wang, B.; Liu, F. Acta Chim. Sinica 2018, 76, 196 (in Chinese).
[3]
(郭妮, 王斌, 刘峰毅, 化学学报, 2018, 76, 196.)
[4]
Mirkovic, T.; Zacharia, N. S.; Scholes, G. D.; Ozin, G. A. ACS Nano 2010, 4, 1782.
[5]
Sengupta, S.; Ibele, M. E.; Sen, A. Angew. Chem., Int. Ed. 2012, 51, 8434.
[6]
Zheng, J.; Dai, B.; Wang, J.; Xiong, Z.; Yang, Y.; Liu, J.; Zhan, X.; Wan, Z.; Tang, J. Nat. Commun. 2017, 8, 1438.
[7]
Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Nat. Commun. 2010, 1, 36.
[8]
Zheng, J.; Wang, J.; Xiong, Z.; Wan, Z.; Zhan, X.; Yang, S.; Chen, J.; Dai, J.; Tang, J. Adv. Funct. Mater. 2019, 29, 1901768.
[9]
Yu, M.; Zhao, W.; Zhang, K.; Guo, X. Acta Chim. Sinica 2021, 79, 500 (in Chinese).
[9]
(于淼, 赵武, 张凯, 郭鑫, 化学学报, 2021, 79, 500.)
[10]
Wang, J.; Xiong, Z.; Zheng, J.; Zhan, X.; Tang, J. Acc. Chem. Res. 2018, 51, 1957.
[11]
Blickle, V.; Bechinger, C. Nat. Phys. 2012, 8, 143.
[12]
Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626.
[13]
Vahrmeijer, A. L.; Hutteman, M.; Van Der Vorst, J. R.; Van De Velde, C. J. H.; Frangioni, J. V. Nat. Rev. Clin. Oncol. 2013, 10, 507.
[14]
Yang, M.; Guo, X.; Mou, F.; Guan, J. Chem. Rev. 2022, 123, 3944.
[15]
Li, H.; Li, Y.; Liu, J. ; He, Q.; Wu, Y. Nanoscale 2022, 14, 7444.
[16]
Ahmed, D.; Baasch, T.; Jang, B.; Pane, S.; Dual, J.; Nelson, B. J. Nano Lett. 2016, 16, 4968.
[17]
Dong, R.; Cai, Y.; Yang, Y.; Gao, W.; Ren, B. Acc. Chem. Res. 2018, 51, 1940.
[18]
Wang, W.; Duan, W.; Ahmed S.; Mallouk, T. E.; Sen, A. Nano Today 2013, 8, 531.
[19]
Chen, X.; Jang, B.; Ahmed, D.; Hu, C.; Marco, C. D.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S. Adv. Mater. 2018, 30, e1705061.
[20]
Han, K.; Shields Iv, C. W.; Velev, O. D. Adv. Funct. Mater. 2017, 28, 1705953.
[21]
Chen, H.; Zhao, Q.; Du, X. Micromachines 2018, 9, 41.
[22]
Moran, J. L.; Posner, J. D. Annu. Rev. Fluid Mech. 2017, 49, 511.
[23]
Zhou, C.; Zhang, H.; Tang, J.; Wang, W. Langmuir 2018, 34, 3289.
[24]
Popescu, M. N.; Uspal, W. E.; Dietrich, S. Eur. Phys. J.: Spec. Top. 2016, 225, 2189.
[25]
Yang, F.; Qian, S.; Zhao, Y.; Qiao, R. Langmuir 2016, 32, 5580.
[26]
Ismagilov, R. F.; Schwartz, A.; Bowden, N.; Whitesides, G. M. Angew. Chem., Int. Ed. 2002, 41, 652.
[27]
Mou, F.; Chen, C.; Ma, H.; Yin, Y.; Wu, Q.; Guan, J. Angew. Chem., Int. Ed. 2013, 52, 7208.
[28]
Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. J. Am. Chem. Soc. 2006, 128, 14881.
[29]
Ibele, M. E.; Lammert, P. E.; Crespi, V. H.; Sen, A. ACS Nano 2010, 4, 4845.
[30]
Wang, W.; Lv, X.; Moran, J. L.; Duan, S.; Zhou, Z. Soft Matter 2020, 16, 3846.
[31]
Yu, H.; Tang, W.; Mu, G.; Wang, H.; Chang, X.; Dong, H.; Qi, L.; Zhang, G.; Li, T. Micromachines 2018, 9, 540.
[32]
Londhe, V.; Sharma, P. Mater. Sci. Eng., C 2020, 117, 111330.
[33]
Chen, H.; Zhao, Q.; Wang, Y.; Mu, S.; Cui, H.; Wang, J.; Kong, T.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 15927.
[34]
Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Nat. Mater. 2016, 15, 1095.
[35]
Ma, F.; Yang, X.; Zhao, H.; Wu, N. Phys. Rev. Lett. 2015, 115, 208302.
[36]
Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. ACS Nano. 2012, 6, 6122.
[37]
Chen, C.; Mou, F.; Xu, L.; Wang, S.; Guan, J.; Feng, Z.; Wang, Q.; Kong, L.; Li, W.; Wang, J.; Zhang, Q. Adv. Mater. 2017, 29, 1603374.
[38]
Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C.; Feng, S.; Tang, J. Nat. Nanotechnol. 2016, 11, 1087.
[39]
Ahmed, S.; Wang, W.; Bai, L.; Gentekos, D. T.; Hoyos, M.; Mallouk, T. E. ACS Nano 2016, 10, 4763.
[40]
Zhou, C.; Gao, C.; Lin, Z.; Wang, D.; Li, Y.; Yuan, Y.; Zhu, B.; He, Q. Langmuir 2020, 36, 7039.
[41]
Tu, Y.; Peng, F.; Sui, X.; Men, Y.; White, P. B.; Van Hest, J. C. M.; Wilson, D. A. Nat. Chem. 2017, 9, 480.
[42]
Liu, T.; Xie, L.; Price, C. A. H.; Liu, J.; He, Q.; Kong, B. Chem. Soc. Rev. 2022, 51, 10083.
[43]
Tang, Y.; Pei, F.; Lu, X.; Fan, Q.; Huang, W. Adv. Mater. Technol. 2019, 7, 1900917.
[44]
Yao, Z.; Carballido-Lopez, R. Annu. Rev. Microbiol. 2014, 68, 45913291329.
[45]
Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Adv. Sci. 2020, 7, 2002203.
[46]
Wu, Z.; Wu, Y.; He, W.; Lin, X.; Sun, J.; He, Q. Angew. Chem., Int. Ed. 2013, 52, 7000.
[47]
Wu, Z.; Li, L.; Yang, Y.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. Sci. Robot. 2019, 4, eaax0613.
[48]
Huang, Y.; Li, T.; Gao, W.; Wang, Q.; Li, X.; Mao, C.; Zhou, M.; Wan, M.; Shen, J. J. Mater. Chem. B 2020, 8, 5765.
[49]
Piszczek, G.; Gryczynski, I.; Maliwal, B. P.; Lakowicz, J. R. J. Fluoresc. 2002, 12, 15.
[50]
Chen, S.; Sun, X.; Fu, M.; Liu, X.; Pang, S.; You, Y.; Liu, X.; Wang, Y.; Yan, X.; Ma, X. Biomaterials 2022, 288, 121744.
[51]
Tang, X.; Manamanchaiyaporn, L.; Zhou, Q.; Huang, C.; Li, L.; Li, Z.; Wang, L.; Wang, J.; Ren, L.; Xu, T.; Yan, X.; Zheng, Y. Small 2022, 18, 2202848.
[52]
Srivastava, S. K.; Medina-Sanchez, M.; Koch, B.; Schmidt, O. G. Adv. Mater. 2016, 28, 832.
[53]
Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Adv. Mater. 2015, 27, 2981.
[54]
Li, W.; Wu, C.; Xiong, Z.; Liang, C.; Li, Z.; Liu, B.; Cao, Q.; Wang, J.; Tang, J.; Li, D. Sci. Adv. 2022, 8, eade1731.
[55]
Yang, J.; Yan, X.; Lyu, Y.; Xing, N.; Yang, P.; Song, P.; Zuo, M. ACS Appl. Mater. Interfaces 2022, 14, 6484.
[56]
Li, L.; Hao, B.; Xiang, C.; Tong, G.; Chen, K. Acta Chim. Sinica 2010, 68, 583 (in Chinese).
[56]
(李良超, 郝斌, 向晨, 童国秀, 陈柯宇, 化学学报, 2010, 68, 583.)
[57]
Yang, X.; Gao, W.; Chen, J.; Lu, X.; Yang, D.; Kang, Y.; Liu, Q.; Qing, Y.; Huang, W. Chin. J. Chem. 2023, 41, 64.
[58]
Han, Y.; Li, S.; Liu, J.; Yu, M. Acta Chim. Sinica 2011, 69, 53 (in Chinese).
[58]
(韩宇, 李松梅, 刘建华, 于美, 化学学报, 2011, 69, 53.)
[59]
Lv, H.; Yao, Y.; Li, S.; Wu, G.; Zhao, B.; Zhou, X.; Zhou, Y.; Xi, S.; Liu, B.; Che, R.; Wu, R. Nat. Commun. 2023, 14, 1982.
[60]
Luo, X.; Li, L.; Zhang, H.; Zhao, S.; Zhang, Y.; Chen, W.; Yu, Z. ACS. Appl. Mater. Interfaces 2021, 13, 45833.
Outlines

/