Perspective

Palladium(II)-Catalyzed Enantioselective Functionalization of C(sp3)—H Bonds

  • Yeqiang Han ,
  • Bingfeng Shi
Expand
  • a Department of Chemistry, Zhejiang University, Hangzhou 310027
    b Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000
Dedicated to the 90th anniversary of Acta Chimica Sinica.
*E-mail: ; Tel.: 0086-571-88981229

Received date: 2023-07-13

  Online published: 2023-09-12

Supported by

National Key Research and Development Program of China(2022YFA1504302); National Natural Science Foundation of China(U22A20388)

Abstract

Chiral molecules are ubiquitous in nature and play an important role in natural products, pharmaceuticals, agriculture, advanced materials, as well as living organisms. Therefore, the development of efficient strategies to enable the facile construction of enantiopure chiral compounds in an atom- and step-economical manner is of great importance. The enantioselective functionalization of C—H bonds without multi-steps transformation is arguably one of the most powerful and straightforward strategies to fulfill this goal. This emerging research field has been rapidly developed with the innovation of various chiral catalysts and/or ligands in recent years. In particular, significant advances have been achieved in palladium-catalyzed enantioselective functionalization of C(sp3)—H bonds, streamlining the efficient and concise construction of chiral molecules from readily available hydrocarbon feedstocks. The stereoselective functionalization of C(sp3)—H bonds with the assistance of chiral ligand to form a chiral palladacycle intermediate, which could be transformed into various chemical bonds to form functionalized chiral compounds, has attracted tremendous attention. Thus, this perspective summarizes the advances on palladium(II)-catalyzed enantioselective functionalization of C(sp3)—H bonds via asymmetric C—H palladation. According to the type of C—H bonds, this perspective is classified into several sections, including methyl C(sp3)—H bonds, methylene C(sp3)—H bonds in constrained cycloalkanes, functionalization of methylene C(sp3)—H bonds adjacent to α-heteroatom, benzylic methylene C(sp3)—H bonds, and unbiased methylene C(sp3)—H bonds. The emphasis of this perspective focuses on the discussion of the philosophy of developing novel chiral ligands and the mode of stereocontrol. The remaining limitations and challenges regarding to chemo- and enantioselective control in this field is also discussed. Further development of new chiral ligands and catalytic systems is expected to address these issues and expands the scope of this powerful synthetic strategy. We anticipate that this perspective might inspire more efforts to this emerging research field and the strategy might find wide applications in the synthesis of complicated chiral molecules, such as natural products and drugs.

Cite this article

Yeqiang Han , Bingfeng Shi . Palladium(II)-Catalyzed Enantioselective Functionalization of C(sp3)—H Bonds[J]. Acta Chimica Sinica, 2023 , 81(11) : 1522 -1540 . DOI: 10.6023/A23070336

References

[1]
(a) Godula K.; Sames D. Science 2006, 312, 67.
[1]
(b) Chen X.; Engle K. M.; Wang D.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[1]
(b) Lyons T. W.; Sanford M. S. Chem. Rev. 2010, 110, 1147.
[1]
(c) Baudoin O. Chem. Soc. Rev. 2011, 40, 4902.
[1]
(d) Rago A. J.; Dong G. Green Synth. Catal. 2021, 2, 216.
[1]
(e) Tong H.-R.; Li B.; Li G.; He G.; Chen G. CCS Chem. 2021, 3, 1797.
[1]
(f) Shi L.; Li T.; Mei G.-J. Green Synth. Catal. 2022, 3, 227.
[1]
(g) Tang L.; Hu Q.; Yang K.; Elsaid M.; Liu C.; Ge H. Green Synth. Catal. 2022, 3, 203.
[1]
(h) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
[2]
(a) Pan F.; Shi Z. Acta Chim. Sinica 2012, 70, 1679. (in Chinese)
[2]
( 潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
[2]
(b) Huang J.; Gu Q.; You S.-L. Chin. J. Org. Chem. 2018, 38, 51. (in Chinese)
[2]
( 黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.)
[2]
(c) Cai Y.; Jiao L.; Qiu X.; Du Z. Chem. Res. Chinese U. 2020, 36, 843.
[2]
(d) Liao G.; Wu Y.-J.; Shi B.-F. Acta Chim. Sinica, 2020, 78, 289. (in Chinese)
[2]
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
[2]
(e) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[2]
(f) Xiang X.; He Z.; Dong X. Chin. J. Org. Chem. 2023, 43, 791. (in Chinese)
[2]
向勋, 何照林, 董秀琴, 有机化学, 2023, 43, 791).
[2]
(g) Chen J.-H.; Shi B.-F. Chin. J. Org. Chem. 2022, 42, 2999. (in Chinese)
[2]
( 陈嘉豪, 史炳锋, 有机化学, 2022, 42, 2999.)
[2]
(h) Wang F.; Li X. Chin. J. Org. Chem. 2022, 42, 4350. (in Chinese)
[2]
( 王芬, 李兴伟, 有机化学, 2022, 42, 4350.)
[2]
(i) Chen J.-H.; Shi B.-F. Chin. J. Org. Chem. 2023, 43, 2252. (in Chinese)
[2]
( 陈嘉豪, 史炳锋, 有机化学, 2023, 43, 2252.)
[3]
(a) Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
[3]
(b) You S.-L. Asymmetric Functionalization of C-H Bonds, Royal Society of Chemistry, Cambridge, 2015.
[3]
(c) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
[3]
(d) Wang Q.; Gu Q.; You S.-L. Acta Chim. Sinica 2019, 77, 690. (in Chinese)
[3]
( 王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
[3]
(e) Liao G.; Zhang T.; Liu Z.-K.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 19773.
[3]
(f) Achar T.; Maiti S.; Jana S.; Maiti D. ACS Catal. 2020, 10, 13748.
[3]
(g) Du Y.; Huang Y.; Gao Y.; Shen H.; Su W.; Hong M. Sci. Sin.-Chim. 2021, 51, 123. (in Chinese)
[3]
( 杜宇, 黄永亮, 高越, 沈慧, 苏伟平, 洪茂椿, 中国科学: 化学, 2021, 51, 123.)
[3]
(h) Yu X.; Zhang Z.-Z.; Niu J.-L.; Shi B.-F. Org. Chem. Front. 2022, 9, 1458.
[4]
(a) Hayashi H.; Uchida T. Eur. J. Org. Chem., 2020, 2020, 909.
[4]
(b) Xia Y.; Qiu D.; Wang J. Chem. Rev. 2017, 117, 13810.
[4]
(c) Davies H. M. L.; Manning J. R. Nature 2008, 451, 417.
[5]
(a) Wang F.; Chen P.; Liu G. Acc. Chem. Res. 2018, 51, 2036.
[5]
(b) Costa M. Chem. Rec. 2021, 21, 4000.
[5]
(c) Zhang Z.; Chen P.; Liu G. Chem. Soc. Rev. 2022, 51, 1640.
[5]
(d) Zhang C.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. Nat. Commun. 2021, 12, 475.
[6]
(a) Saint-Denis T. G.; Zhu R.-Y.; Chen G.; Wu Q.-F.; Yu J.-Q. Science 2018, 359, 759.
[6]
(b) Zhan B.-B.; Jin L.; Shi B.-F. Trends in Chem. 2022, 4, 220.
[7]
(a) Vyhivskyi O.; Kudashev A.; Miyakoshi T.; Baudoin O. Chem. Eur. J. 2021, 27, 1231;
[7]
(b) Wang P.-S.; Gong L.-Z. Acc. Chem. Res. 2020, 53, 2841.
[7]
(c) Wang P.-S.; Gong L.-Z. Chin. J. Chem. 2023, 41, 1841.
[7]
(d) Wang P.-S.; Gong L.-Z. Synthesis 2022, 54, 4795.
[8]
(a) Wang H.; Xu Y.; Zhang F.; Liu Y.; Feng X. Angew. Chem., Int. Ed. 2022, 61, e202115715.
[8]
(b) Liu X.; Dong S.; Lin L.; Feng X. Chin. J. Chem. 2018, 36, 791.
[8]
(c) Cao W.; Liu X.; Feng X. Chin. Sci. Bull. 2020, 65, 2941.
[8]
(d) Liu X.; Zheng H.; Xia Y.; Lin L.; Feng X. Acc. Chem. Res. 2017, 50, 2621.
[8]
(e) Liu X.; Lin L.; Feng X. Org. Chem. Fron. 2014, 1, 298.
[8]
(f) Liu X.; Lin L.; Feng X. Acc. Chem. Res. 2011, 44, 574.
[9]
(a) Shi B.-F.; Maugel N.; Zhang Y.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[9]
(b) Wu Q.-F.; Shen P.-X.; He J.; Wang X.-B.; Zhang F.; Shao Q.; Zhu R.-Y.; Mapelli C.; Qiao J. X.; Poss M. A.; Yu J-Q. Science 2017, 355, 499.
[10]
Jiang H.-J.; Zhong X.-M.; Liu Z. Y.; Geng R. L.; Li Y. Y.; Wu Y.-D.; Zhang X.; Gong L.-Z. Angew. Chem., Int. Ed. 2020, 59, 12774.
[11]
Yuan C.; Wang X.; Jiao L. Angew. Chem., Int. Ed. 2023, 62, e202300854.
[12]
Shao Q.; Wu Q.-F.; He J.; Yu J.-Q. J. Am. Chem. Soc. 2018, 140, 5322.
[13]
He J.; Shao Q.; Wu Q.; Yu J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[14]
Smalley A. P.; Cuthbertson J. D.; Gaunt M. J. J. Am. Chem. Soc. 2017, 139, 1412.
[15]
Jiang H.-J.; Geng R.-L.; Wei J.-H; Gong L.-Z. Chin. J. Chem. 2021, 39, 3269.
[16]
Uchikura T.; Kato S.; Makino Y.; Fujikawa M. J.; Yamanaka M.; Akiyama T. J. Am. Chem. Soc. 2023, 145, 15906.
[17]
Wasa M.; Engle K. M.; Lin D. W.; Yoo E. J.; Yu J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
[18]
Xiao K.-J.; Lin D. W.; Miura M.; Zhu R.-Y.; Gong W.; Wasa M.; Yu J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
[19]
Chan K. S. L.; Fu H.-Y.; Yu J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
[20]
Wu Q.-F.; Wang X.-B.; Shen P.-X.; Yu J.-Q. ACS Catal. 2018, 8, 2577.
[21]
Xiao L.-J.; Hong K.; Luo F.; Hu L.; Ewing W. R.; Yeung K.-S.; Yu J.-Q. Angew. Chem., Int. Ed. 2020, 59, 9594.
[22]
Zhuang Z.; Yu J.-Q. J. Am. Chem. Soc. 2020, 142, 12015.
[23]
Shen P.-X.; Hu L.; Shao Q.; Hong K.; Yu J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.
[24]
Hu L.; Shen P.-X.; Shao Q.; Hong K.; Qiao J. X.; Yu J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134.
[25]
Jain P.; Verma P.; Xia G.; Yu J.-Q. Nat. Chem. 2017, 9, 140.
[26]
Jiang H.-J.; Zhong X.-M.; Yu J.; Zhang Y.; Zhang X.; Wu Y.-D.; Gong L.-Z. Angew. Chem., Int. Ed. 2019, 58, 1803.
[27]
Zhang F.-L.; Hong K.; Li T.-J.; Park H.; Yu J.-Q. Science 2016, 351, 252.
[28]
Park H.; Verma P.; Hong K.; Yu J.-Q. Nat. Chem. 2018, 10, 755.
[29]
Yan S.-B.; Zhang S.; Duan W.-L. Org. Lett. 2015, 17, 2458.
[30]
Tong H.-R.; Zheng S.; Li X.; Deng Z.; Wang H.; He G.; Peng Q.; Chen G. ACS Catal. 2018, 8, 11502.
[31]
Wang H.; Tong H.-R.; He G.; Chen G. Angew. Chem., Int. Ed. 2016, 55, 15387.
[32]
Chen G.; Gong W.; Zhuang Z.; Andr? M. S.; Chen Y.-Q.; Hong X.; Yang Y.-F.; Liu T.; Houk K. N.; Yu J.-Q. Science 2016, 353, 1023.
[33]
Yang Y.-F.; Chen G.; Hong X.; Yu J.-Q.; Houk K. N. J. Am. Chem. Soc. 2017, 139, 8514.
[34]
Li H.-L.; Yang D.-F.; Jing H.-Q.; Antilla J. C.; Kuninobu Y. Org. Lett. 2022, 24, 1286.
[35]
(a) Zhang Q.; Chen K.; Rao W.-H.; Zhang Y.; Chen F.-J.; Shi B.-F. Angew. Chem. Int. Ed. 2013, 52, 13588.
[35]
(b) Chen F.-J.; Zhao S.; Hu F.; Chen K.; Zhang Q.; Zhang S.-Q.; Shi B.-F. Chem. Sci. 2013, 4, 4187.
[35]
(c) Zhang Qi; Shi B.-F. Chin. J. Chem. 2019, 37, 647.
[35]
(d) Zhang Q.; Shi B.-F. Acc. Chem. Res. 2021, 54, 2750.
[36]
Yan S.-Y.; Han Y.-Q.; Yao Q.-J.; Nie X.-L.; Liu L.; Shi B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[37]
Han Y.-Q.; Ding Y.; Zhou T.; Yan S.-Y.; Song H.; Shi B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
[38]
Zhou T.; Jiang M. X.; Yang X.; Yue Q.; Han Y.-Q.; Ding Y.; Shi B.-F. Chin. J. Chem. 2020, 38, 242.
[39]
Tong H.-R.; Zheng W.; Lv X.; He G.; Liu P.; Chen G. ACS Catal. 2019, 10, 114.
[40]
Ding Y.; Han Y.-Q.; Wu L.-S.; Zhou T.; Yao Q.-J.; Feng Y.-L.; Li Y.; Kong K.-X.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 14060.
[41]
Han Y.-Q.; Zhang Q.; Yang X.; Jiang M. X.; Ding Y.; Shi B.-F. Org. Lett. 2021, 23, 97.
[42]
Jiang M. X.; Yang X.; Han Y.-Q.; Zhou T.; Xu X.-T.; Zhang K.; Shi B.-F. Org. Chem. Front. 2021, 8, 2903.
[43]
Yang X.; Jiang M.-X.; Zhou T.; Han Y.-Q.; Xu X.-T.; Zhang K.; Shi B.-F. Chem. Commun. 2021, 57, 5562.
[44]
Andr? M. S.; Schifferer L.; Pollok C. H.; Merten C.; Goo?en L. J.; Yu J.-Q. Chem. Eur. J. 2019, 25, 8503.
[45]
Wasa M.; Chan K. S. L.; Zhang X.-G.; He J.; Miura M.; Yu J.-Q. J. Am. Chem. Soc. 2012, 134, 18570.
[46]
Nack W. A.; Wang B.; Wu X.; Jiao R.; He G.; Chen G. Org. Chem. Front. 2016, 3, 561.
[47]
Han Y.-Q.; Yang X.; Kong K.-X.; Deng Y. T.; Wu L.-S.; Ding Y.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 20455.
[48]
Wu L.-S.; Ding Y.; Han Y.-Q.; Shi B.-F. Org. Lett. 2021, 23, 2048.
[49]
Zhang Q.; Shi B.-F. Chem. Sci. 2021, 12, 841.
Outlines

/