Review

Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes

  • Yalan Zhang ,
  • Zhixiang Yuan ,
  • Hao Zhang ,
  • Jianjun Zhang ,
  • Guanglei Cui
Expand
  • a Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101
    b Shandong Energy Institute, Qingdao 266101
    c Qingdao New Energy Shandong Laboratory, Qingdao 266101
    d Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
; Tel.: 0532-80662746; Fax: 0532-80662744

Received date: 2023-08-08

  Online published: 2023-09-12

Supported by

National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of Chinese Academy of Sciences(2020217); Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies(EEST2022-1)

Abstract

To achieve carbon peaking and carbon neutrality goals, increasing the share of non-fossil energy consumption and accelerating the growth of clean, low-carbon and sustainable energy are highly desirable in developing a clean and diversified energy supply system. In this retrospect, new energy vehicles have become an ideal substitute for the traditional fuel vehicles due to their green, low-carbon, clean and sustainable characteristics, and have promising development in the future transportation industry. However, the continuously increasing demand for longer range and safety performance in electric vehicles has challenged the state-of-the-art liquid-state lithium-ion batteries. At present, the conventional lithium-ion batteries based on the traditional carbonate liquid-state electrolyte face many potential safety issues, such as leakage, volatility, combustion and explosion. In addition, their energy density reaches closely to their theoretical upper limit. Therefore, breakthroughs in battery storage technologies are urgently needed. Solid-state lithium-ion batteries, which are built with solid-state electrolytes and Ni-rich cathodes/graphite (or silicon-carbon) electrodes are the most promising battery technologies combining high energy density and improved safety property. An in-depth literature survey shows that considerable progress in the construction of high safety, high energy density Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries have been achieved recently. Hence, this review mainly summarizes the research progress and the development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries using inorganic solid electrolytes and polymer solid electrolytes. Moreover, the remaining challenges and future development trends of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries are also discussed and presented. It is expected that the current review would contribute to the further research and development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries.

Cite this article

Yalan Zhang , Zhixiang Yuan , Hao Zhang , Jianjun Zhang , Guanglei Cui . Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes[J]. Acta Chimica Sinica, 2023 , 81(12) : 1724 -1738 . DOI: 10.6023/A23080370

References

[1]
Friedlingstein, P.; O'sullivan, M.; Jones, M. W.; Andrew, R. M.; Gregor, L.; Hauck, J.; Quéré, C. L.; Luijkx, I. T.; Olsen, A.; Peters, G. P. Earth Syst. Sci. Data 2022, 14, 4811.
[2]
Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41, 1119.
[3]
Chen, L.; Huang, Y.-F.; Ma, J.; Ling, H.; Kang, F.; He, Y.-B. Energy Fuels 2020, 34, 13456.
[4]
Zhao, R.; Yang, J.; Wang, B.; Ma, Z.; Pan, L.; Li, Y. Chin. J. Chem. 2023, 41, 2493.
[5]
Chawla, N.; Bharti, N.; Singh, S. Batteries 2019, 5, 19.
[6]
Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. Energy Environ. Mater. 2023, 12450.
[7]
Ye, Z.; Qiu, L.; Yang, W.; Wu, Z.; Liu, Y.; Wang, G.; Song, Y.; Zhong, B.; Guo, X. Chem. - Eur. J. 2021, 27, 4249.
[8]
Du, C.; Zhao, Z.; Liu, H.; Song, F.; Chen, L.; Cheng, Y.; Guo, Z.; Chem. Rec. 2023, 23, 202300004.
[9]
Liu, H.; Sun, Q.; Zhang, H.; Cheng, J.; Li, Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F.; Li, D.; Lu, J.; Ci, L. Energy Storage Mater. 2023, 55, 244.
[10]
Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Angew. Chem., Int. Ed. 2020, 59, 110.
[11]
Lu, J.-S.; Chen, J.-M.; He, T.-X.; Zhao, J.-W.; Liu, J.; Huo, Y.-P. Prog. Chem. 2021, 33, 1344 (in Chinese).
[11]
(陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平, 化学进展, 2021, 33, 1344.)
[12]
Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028.
[13]
Nagata, H.; Akimoto, J. J. Power Sources 2022, 539, 231596.
[14]
Akimoto, J.; Akao, T.; Kataoka, K. Small 2023, 2301617.
[15]
Qiu, Z.-P.; Zhang, Y. J.; Xia, S.-B.; Dong, P. Acta Chim. Sinica 2015, 73, 992 (in Chinese).
[15]
(邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[16]
Nam, Y. J.; Oh, D. Y.; Jung, S. H.; Jung, Y. S. J. Power Sources 2018, 375, 93.
[17]
Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.; Choi, N.; Jung, Y. S. Mater. Chem. A 2017, 5, 20771.
[18]
Lee, Y.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. Nat. Energy 2020, 5, 299.
[19]
Zhao, X.; Lehto, V. P. Nanotechnology 2021, 32, 042002.
[20]
Poetke, S.; Hippauf, F.; Baasner, A.; D?rfler, S.; Althues, H.; Kaskel, S. Batteries Supercaps 2021, 4, 1323.
[21]
Poetke, S.; Cangaz, S.; Hippauf, F.; Haufe, S.; D?rfler, S.; Althues, H.; Kaskel, S. Energy Technol. 2023, 11, 2201330.
[22]
Cangaz, S.; Hippauf, F.; Reuter, F. S.; Doerfler, S.; Abendroth, T.; Althues, H.; Kaskel, S. Adv. Energy Mater. 2020, 10, 2001320.
[23]
Jun, S.; Nam, Y. J.; Kwak, H.; Kim, K. T.; Oh, D. Y.; Jung, Y. S. Adv. Funct. Mater. 2020, 30, 2002535.
[24]
Qian, H.; Ren, H.; Zhang, Y. Electrochem. Energy Rev. 2022, 5, 2.
[25]
Yu, R.; Wang, C.; Duan, H.; Jiang, M.; Zhang, A.; Fraser, A. Adv. Mater. 2023, 35, 2207234.
[26]
Myung, S. T.; Maglia, F.; Park, K. J.; Yoon, C. S.; Lamp, P.; Chong, S. Y.; Sun, Y. K. ACS Energy Lett. 2017, 58, 196.
[27]
Visbal, H.; Fujiki, S.; Aihara, Y.; Watanabe, T.; Park, Y.; Doo, S. J. Power Sources 2014, 269, 396.
[28]
Ito, S.; Fujiki, S.; Yamada, T.; Aihara, Y.; Park, Y.; Kim, T. Y. J. Power Sources 2014, 248, 943.
[29]
Visbal, H.; Aihara, Y.; Ito, S.; Watanabe, T.; Park, Y.; Doo, S. J. Power Sources 2016, 314, 85.
[30]
Ulissi, U.; Agostini, M.; Ito, S.; Aihara, Y.; Hassoun, J. Solid State Ion. 2016, 296, 13.
[31]
Xing, X.; Li, Y.; Wang, S.; Liu, H.; Wu, Z.; Yu, S.; Holoubek, J.; Zhou, H.; Liu, P. ACS Energy Lett. 2021, 6, 1831.
[32]
Huang, Q.; Song, J.; Gao, Y.; Wang, D.; Wang, D. Nat. Commun. 2019, 10, 5586.
[33]
Harpak, N.; Davidi, G.; Schneier, D.; Menkin, S.; Mados, E.; Golodnitsky, D.; Peled, E. Nano Lett. 2019, 19, 944.
[34]
Dan, S.; Harpak, N.; Menkin, S.; Davidi, G.; Goor, M.; Mados, E. J. Electrochem. Soc. 2020, 167, 050511.
[35]
Woo, M.; Didwal, P. N.; Kim, H.; Lim, J.; Nguyen, A.; Jin, C.; Chang, D. R.; Park, C. Appl. Surf. Sci. 2021, 568, 150934.
[36]
Li, J.; Feng, Y.; Zhu, J.; Mo, C.; Cai, Q.; Liao, Y.; Li, W. ACS Appl. Mater. Interfaces 2022, 14, 36656.
[37]
Yuan, Z.-X.; Zhang, H.; Hu, S.-J.; Zhang, B.-T.; Zhang, J.-J.; Cui, G.-L. Acta Chim. Sinica 2023, 81, 1064 (in Chinese).
[37]
(苑志祥, 张浩, 胡思伽, 张波涛, 张建军, 崔光磊, 化学学报, 2023, 81, 1064.)
[38]
Li, X.; Qian, K.; He, Y.; Liu, C.; An, D.; Li, Y. J. Mater. Chem. A 2017, 10, 1039.
[39]
Shen, Z.; Zhong, J.; Jiang, S.; Xie, W.; Zhan, S.; Lin, K.; Zeng, L.; Hu, H.; Lin, G.; Lin, Y.; Sun, S.; Shi, Z. ACS Appl. Mater. Interfaces 2022, 14, 41022.
[40]
Zhao, E.; Luo, S.; Gu, Y.; Yang, L.; Hirano, S. I. ACS Appl. Mater. Interfaces 2021, 13, 59843.
[41]
Zhao, E.; Luo, S.; Zhang, Z.; Saito, N.; Yang, L.; Hirano, S. I. Electrochim. Acta 2022, 434, 141299.
[42]
Yee, M.; An, K.; Nguyen, D. T.; Yun, H. W.; Park, J.; Suk, J.; Song, S. W. Mater. Today Energy 2022, 24, 100950.
[43]
Lu, Q.; Wang, C.; Bao, D.; Duan, H.; Zhao, F.; Doyle-Davis, K.; Zhang, Q.; Wang, R.; Zhao, S.; Wang, J.; Huang, H.; Sun, X. Energy Environ. Mater. 2023, 12447.
[44]
Zhu, T.; Liu, G.; Chen, D.; Chen, J.; Qi, P.; Sun, J.; Gu, X.; Zhang, S. Energy Storage Mater. 2022, 50, 495.
Outlines

/