Review

Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides

  • Yang Gao ,
  • Xuexin Zhang ,
  • Jinsheng Yu ,
  • Jian Zhou
Expand
  • a State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-07-28

  Online published: 2023-10-08

Supported by

National Natural Science Foundation of China(21971067); National Natural Science Foundation of China(22171087); Innovation Program of Shanghai Municipal Education Commission(2023ZKZD37); Shanghai Science and Technology Innovation Action Plan(20JC1416900); Shanghai Science and Technology Innovation Action Plan(21N41900500)

Abstract

α-Chiral azides are widely used in the fields of synthetic chemistry, medicinal chemistry and life science. Owing to α-chiral azides can be used for the diverse synthesis of α-chiral amine derivatives and nitrogen-containing heterocycles, and its azido group is also a pharmacophore, the efficient synthesis of α-chiral azides is highly important for drug discovery and development. Along with the incorporation of chiral quaternary carbon that can increase the three-dimensional stereospecificity of molecules has become an effective strategy to improve the bioactivity and druggability in drug design and development, the development of catalytic asymmetric synthetic methods toward α-chiral tertiary azides featuring aza-quaternary carbon center is highly desirable to facilitate drug research. However, due to the adverse steric effects caused by the structure of azido group that is close to a straight line, and the challenge of distinguishing the substituents with less difference to construct the aza-quaternary carbon stereocenter, the catalytic asymmetric protocols with high enantioselectivity are relatively scarce. This review aims to summarize the advances of the past five years according to the following two strategies: asymmetric functionalizations of C—N3 bond containing compounds and asymmetric azidations involving C—N3 bond forming, as well as discusses the possible reaction mechanism, the advantages and disadvantages of different reactions, which would provide some references and inspiration for researchers engaged in organic synthesis and medicinal chemistry.

Cite this article

Yang Gao , Xuexin Zhang , Jinsheng Yu , Jian Zhou . Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides[J]. Acta Chimica Sinica, 2023 , 81(11) : 1590 -1608 . DOI: 10.6023/A23070359

References

[1]
(a) Grie? P. Justus Liebigs Ann. Chem. 1865, 135, 131.
[1]
(b) Grie? P. Philos. Trans. R. Soc. London, 1864, 13, 377.
[2]
(a) Boyer J. H.; Canter F. C. Chem. Rev. 1954, 54, 1.
[2]
(b) L’abbé. G. Chem. Rev. 1969, 69, 345.
[2]
(c) Scriven E. F. V.; Turnbull K. Chem. Rev. 1988, 88, 297.
[2]
(d) Br?se S.; Gil C.; Knepper K.; Zimmermann V. Angew. Chem., Int. Ed. 2005, 44, 5188.
[2]
(e) Lang S.; Murphy J. A. Chem. Soc. Rev. 2006, 35, 146.
[2]
(f) Fu J.; Zanoni G.; Anderson E. A.; Bi X. Chem. Soc. Rev. 2017, 46, 7208.
[2]
(g) Sivaguru P.; Ning Y.; Bi X. Chem. Rev. 2021, 121, 4253.
[2]
(h) Br?se S.; Banert K. Organic Azides: Syntheses and Applications, Wiley, 2009.
[3]
(a) Meldal M.; Torn?e C. W. Chem. Rev. 2008, 108, 2952.
[3]
(b) Mamidyala S. K.; Finn M. G. Chem. Soc. Rev. 2010, 39, 1252.
[3]
(c) Golas P. L.; Matyjaszewski K. Chem. Soc. Rev. 2010, 39, 1338.
[3]
(d) Tiwari V. K.; Mishra B. B.; Mishra K. B.; Mishra N.; Singh A. S.; Chen X. Chem. Rev. 2016, 116, 3086.
[3]
(e) Kacprzak K.; Skiera I.; Piasecka M.; Paryzek Z. Chem. Rev. 2016, 116, 5689.
[4]
Beenhouwer D. O.; Rankin J. A.; Mellors J. W. Antiviral Res. 1992, 19, 43.
[5]
Klumpp K.; Lévêque V.; Pogam S. L.; Ma H.; Jiang W.-R.; Kang H.; Granycome C.; Singer M.; Laxton C.; Hang J. Q.; Sarma K.; Smith D. B.; Heindl D.; Hobbs J. C.; Merrett J. H.; Symons J.; Cammack N.; Martin J. A.; Devos R.; Nájera I. J. Biol. Chem. 2006, 281, 3793.
[6]
Sun L.; Peng Y.; Yu W.; Zhang Y.; Liang L.; Song C.; Hou J.; Qiao Y.; Wang Q.; Chen J.; Wu M.; Zhang D.; Li E.; Han Z.; Zhao Q.; Jin X.; Zhang B.; Huang Z.; Chai J.; Wang J.-H.; Chang J. J. Med. Chem. 2020, 63, 8554.
[7]
(a) Lao Z.; Toy P. H. Beilstein J. Org. Chem. 2016, 12, 2577.
[7]
(b) Palacios F.; Alonso C.; Aparicio D.; Rubiales G.; Santos J. M. Tetrahedron 2007, 63, 523.
[7]
(c) Haldón E.; Nicasio M. C.; Pérez P. J. Org. Biomol. Chem. 2015, 13, 9528.
[7]
(d) Uchida T.; Katsuki T. Chem. Rec. 2014, 14, 117.
[7]
(e) Frost J. R.; Pearson C. M.; Snaddon T. N.; Booth R. A.; Turner R. M.; Gold J.; Shaw D. M.; Gaunt M. J.; Ley S. V. Chem. Eur. J. 2015, 21, 13261.
[8]
(a) Shibatomi K.; Soga Y.; Narayama A.; Fujisawa I.; Iwasa S. J. Am. Chem. Soc. 2012, 134, 9836.
[8]
(b) Bosmani A.; Pujari S. A.; Besnard C.; Guénée L.; Poblador-Bahamonde A. I.; Lacour J. Chem. Eur. J. 2017, 23, 8678.
[8]
(c) Fernández-Valparis J.; Romea P.; Urpí F.; Font-Bardia M. Org. Lett. 2017, 19, 6400.
[9]
(a) Ding P.-G.; Hu X.-S.; Zhou F.; Zhou J. Org. Chem. Front. 2018, 5, 1542.
[9]
(b) Ge L.; Chiou M.-F.; Li Y.; Bao H. Green Synth. Catal. 2020, 1, 86.
[9]
(c) Wei F.; Yu X.; Xiao Q. Chin. J. Org. Chem. 2023, 43, 1365. (in Chinese)
[9]
( 魏芳, 余鑫, 肖强, 有机化学, 2023, 43, 1365.)
[10]
Liu Z.; Liao P.; Bi X. Org. Lett. 2014, 16, 3668.
[11]
(a) Wang Y.-F.; Toh K. K.; Ng E. P. J.; Chiba S. J. Am. Chem. Soc. 2011, 133, 6411.
[11]
(b) Wang Y.-F.; Toh K. K.; Lee J.-Y.; Chiba S. Angew. Chem., Int. Ed. 2011, 50, 5927.
[11]
(c) Jung N.; Br?se S. Angew. Chem., Int. Ed. 2012, 51, 12169.
[11]
(d) Xuan J.; Xia X.-D.; Zeng T.-T.; Feng Z.-J.; Chen J.-R.; Lu L.-Q.; Xiao W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653.
[11]
(e) Farney E. P.; Yoon T. P. Angew. Chem., Int. Ed. 2014, 53, 793.
[11]
(f) Hu B.; DiMagno S. G. Org. Biomol. Chem. 2015, 13, 3844.
[11]
(g) Hayashi H.; Kaga A.; Chiba S. J. Org. Chem. 2017, 82, 11981.
[11]
(h) Ning Y.; Ji Q.; Liao P.; Anderson E. A.; Bi X. Angew. Chem., Int. Ed. 2017, 56, 13805.
[11]
(i) Ning Y.; Zhao X.-F.; Wu Y.-B.; Bi X. Org. Lett. 2017, 19, 6240.
[11]
(j) Kanchupalli V.; Katukojvala S.; Angew. Chem., Int. Ed. 2018, 57, 5433.
[11]
(k) Zhong Z.; Xiao Z.; Liu X.; Cao W.; Feng X. Chem. Sci. 2020, 11, 11492. Also see ref. 2f.
[12]
(a) Gu P.; Su Y.; Wu X. P.; Sun J.; Liu W.; Xue P.; Li R. Org. Lett. 2012, 14, 2246.
[12]
(b) López E.; López L. A. Angew. Chem., Int. Ed. 2017, 56, 5121.
[13]
Thirupathi N.; Wei F.; Tung C.-H.; Xu Z. Nat. Commun. 2019, 10, 3158.
[14]
Nakanishi T.; Kikuchi J.; Kaga A.; Chiba S.; Terada M. Chem. Eur. J. 2020, 26, 8230.
[15]
Chowdari N. S.; Ahmad M.; Albertshofer K.; Tanaka F.; Barbas C. F. Org. Lett. 2006, 8, 2839.
[16]
Martínez-Casta?eda á.; K?dziora K.; Lavandera I.; Rodríguez- Solla H.; Concellón C.; Amo V. Chem. Commun. 2014, 50, 2598.
[17]
McNulty J.; Zepeda-Velázquez C. Angew. Chem., Int. Ed. 2014, 53, 8450.
[18]
(a) Weidner K.; Sun Z.; Kumagai N.; Shibasaki M. Angew. Chem., Int. Ed. 2015, 54, 6236.
[18]
(b) Sun Z.; Weidner K.; Kumagai N.; Shibasaki M. Chem. Eur. J. 2015, 21, 17574.
[18]
(c) Noda H.; Amemiya F.; Weidner K.; Kumagai N.; Shibasaki M. Chem. Sci. 2017, 8, 3260.
[19]
Okumu? S.; Tanyeli C.; Demir A. S. Tetrahedron Lett. 2014, 55, 4302.
[20]
Ye X.; Pan Y.; Yang X. Chem. Commun. 2020, 56, 98.
[21]
Karahan S.; Tanyeli C. Org. Biomol. Chem. 2020, 18, 479.
[22]
Ding P.-G.; Zhou F.; Wang X.; Zhao Q.-H.; Yu J.-S.; Zhou J. Chem. Sci. 2020, 11, 3852.
[23]
Ding P.-G.; Hu X.-S.; Yu J.-S.; Zhou J. Org. Lett. 2020, 22, 8578.
[24]
For a review: (a) Wang C.; Zhou F.; Zhou J. Chin. J. Org. Chem. 2020, 40, 3065. (in Chinese)
[24]
王才, 周锋, 周剑, 有机化学, 2020, 40, 3065.)
[24]
For selected examples: (b) Meng J.; Fokin V. V.; Finn M. G. Tetrahedron Lett. 2005, 46, 4543.
[24]
(c) Alexander J. R.; Ott A. A.; Liu E.-C.; Topczewski J. J. Org. Lett. 2019, 21, 4355.
[24]
(d) Liu E.-C.; Topczewski J. J. J. Am. Chem. Soc. 2019, 141, 5135.
[25]
Yang X.; Birman V. B. Chem. Eur. J. 2011, 17, 11296.
[26]
Ott A. A.; Goshey C. S.; Topczewski J. J. J. Am. Chem. Soc. 2017, 139, 7737.
[27]
Ye P.; Feng A.; Wang L.; Cao M.; Zhu R.; Liu L. Nat. Commun. 2022, 13, 1621.
[28]
Gong Y.; Wang C.; Zhou F.; Liao K.; Wang X.-Y.; Sun Y.; Zhang Y.-X.; Tu Z.; Wang X.; Zhou J. Angew. Chem., Int. Ed. 2023, 62, e202301470.
[29]
(a) Zhu R.-Y.; Chen L.; Hu X.-S.; Zhou F.; Zhou J. Chem. Sci. 2020, 11, 97.
[29]
(b) Liao K.; Gong Y.; Zhu R.-Y.; Wang C.; Zhou F.; Zhou J. Angew. Chem., Int. Ed. 2021, 60, 8488.
[30]
(a) Zhdankin V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014.
[30]
(b) Yoshimura A.; Zhdankin V. V. Chem. Rev. 2016, 116, 3328.
[31]
(a) Simonet-Davin R.; Waser J. Synthesis 2023, 55, 1652.
[31]
(b) Mironova I. A.; Kirsch S. F.; Zhdankin V. V.; Yoshimura A.; Yusubov M. S. Eur. J. Org. Chem. 2022, 2022, e202200754.
[32]
Deng Q.-H.; Bleith T.; Wadepohl H.; Gade L. H. J. Am. Chem. Soc. 2013, 135, 5356.
[33]
Wang C.-J.; Sun J.; Zhou W.; Xue J.; Ren B.-T.; Zhang G.-Y.; Mei Y.-L.; Deng Q.-H. Org. Lett. 2019, 21, 7315.
[34]
Lin C.-Z.; Jiang L.-F.; Zhang G.-Y.; Zhou F.-S.; Wu S.-H.; Jing C.; Deng Q.-H. Chem. Commun. 2023, 59, 7831.
[35]
Chen Y.-X.; Huo T.; Yin Q.; Jiang L.-F.; Cheng X.; Ma H.-X.; Jiang Y.-X.; Sun M.-Z.; Deng Q.-H. Org. Lett. 2023, 25, 2739.
[36]
He C.; Wu Z.; Zhou Y.; Cao W.; Feng X. Org. Chem. Front. 2022, 9, 703.
[37]
Tiffner M.; Stockhammer L.; Sch?rgenhumer J.; R?ser K.; Waser M. Molecules 2018, 23, 1142.
[38]
Examples for constructing of α-chiral secondary azides using NaN3: (a) Taylor M. S.; Zalatan D. N.; Lerchner A. M.; Jacobsen E. N. J. Am. Chem. Soc. 2005, 127, 1313.
[38]
(b) Huang X.; Bergsten T. M.; Groves J. T. J. Am. Chem. Soc. 2015, 137, 5300.
[39]
Gomes R. S.; Corey E. J. J. Am. Chem. Soc. 2019, 141, 20058.
[40]
Zhang X.; Ren J.; Tan S. M.; Tan D.; Lee R.; Tan C.-H. Science 2019, 363, 400.
[41]
Ren J.; Ban X.; Zhang X.; Tan S. M.; Lee R.; Tan C.-H. Angew. Chem., Int. Ed. 2020, 59, 9055.
[42]
Uyanik M.; Sahara N.; Tsukahara M.; Hattori Y.; Ishihara K. Angew. Chem., Int. Ed. 2020, 59, 17110.
[43]
Cao M.; Wang H.; Ma Y.; Tung C.-H.; Liu L. J. Am. Chem. Soc. 2022, 144, 15383.
[44]
Wu J.-F.; Wan N.-W.; Li Y.-N.; Wang Q.-P.; Cui B.-D.; Han W.-Y.; Chen Y.-Z. iScience 2021, 24, 102883.
[45]
Zhou P.; Lin L.; Chen L.; Zhong X.; Liu X.; Feng X. J. Am. Chem. Soc. 2017, 139, 13414.
[46]
Seidl F. J.; Min C.; Lopez J. A.; Burns N. Z. J. Am. Chem. Soc. 2018, 140, 15646.
[47]
Wu L.; Zhang Z.; Wu D.; Wang F.; Chen P.; Lin Z.; Liu G. Angew. Chem., Int. Ed. 2021, 60, 6997.
[48]
Liu W.; Pu M.; He J.; Zhang T.; Dong S.; Liu X.; Wu Y.-D.; Feng X. J. Am. Chem. Soc. 2021, 143, 11856.
Outlines

/