Surface Functionalization Based on Protein Amyloid-like Aggregation★
Received date: 2023-06-01
Online published: 2023-10-08
Supported by
National Science Foundation through Distinguished Young Scholars(52225301); National Key R&D Program of China(2020YFA0710400); National Key R&D Program of China(2020YFA0710402); 111 Project(B14041); Fundamental Research Funds for the Central Universities(GK202305001); Innovation Capability Support Program of Shaanxi Province(2020TD-024); International Science and Technology Cooperation Program of Shaanxi Province(2022KWZ-24)
Surface modification plays a pivotal role across various domains by conferring novel properties and heightened value to materials, all while preserving their inherent characteristics. However, a critical impediment stalling the broader utilization and advancement of advanced interface materials is the absence of a simple, environmentally friendly, universally applicable, colorless and transparent interface modification system. Since the initial reports of employing amyloid-like proteins for interface modification, this approach has garnered considerable attention and research within the academic community. Subsequently, an array of protein-based materials featuring diverse morphological structures such as nanofilms, nanofibers, large particle aggregates, hydrogels, aerogels, and more have emerged. This review commences by elucidating the fundamental principles underlying amyloid-like protein aggregation. Subsequently, it provides a comprehensive summary of its applications as a surface modification system in various domains including biomedical coatings, separation and dialysis, biomineralization, flexible electronics, smart fabrics, chemical catalysis and environmental pollutant removal. Furthermore, it discusses the current application directions and ultimately highlights the system's limitations, concluding with a prospective outlook on its future development.
Key words: surface/interface modification; amyloid-like protein; nanofilm
Chengyu Fu , Xingyu Zhou , Peng Yang . Surface Functionalization Based on Protein Amyloid-like Aggregation★[J]. Acta Chimica Sinica, 2023 , 81(11) : 1566 -1576 . DOI: 10.6023/A23060266
| [1] | Liu Y.; Ai K.; Lu L. Chem. Rev. 2014, 114, 5057. |
| [2] | Ejima H.; Richardson J. J.; Liang K.; Best J. P.; van Koeverden M. P.; Such G. K.; Cui J.; Caruso F. Science 2013, 341, 154. |
| [3] | Barclay T. G.; Hegab H. M.; Clarke S. R.; Ginic-Markovic M. Adv. Mater. Interfaces 2017, 4, 19, |
| [4] | Wang Z.; Yang H.-C.; He F.; Peng S.; Li Y.; Shao L.; Darling S. B. Matter 2019, 1, 115. |
| [5] | Geng H.; Cui J.; Hao J. Acta Chim. Sinica 2020, 78, 105. (in Chinese) |
| [5] | ( 耿慧敏, 崔基炜, 郝京诚, 化学学报, 2020, 78, 105.) |
| [6] | Ryu J. H.; Messersmith P. B.; Lee H. ACS Appl. Mater. Interfaces 2018, 10, 7523. |
| [7] | Lee H.; Dellatore S. M.; Miller W. M.; Messersmith P. B. Science 2007, 318, 426. |
| [8] | Wei Q.; Haag R. Mater. Horiz. 2015, 2, 567. |
| [9] | d'Ischia M.; Napolitano A.; Ball V.; Chen C. T.; Buehler M. J. Acc. Chem. Res. 2014, 47, 3541. |
| [10] | Ye Q.; Zhou F.; Liu W. Chem. Soc. Rev. 2011, 40, 4244. |
| [11] | Madhurakkat Perikamana S. K.; Lee J.; Lee Y. B.; Shin Y. M.; Lee E. J.; Mikos A. G.; Shin H. Biomacromolecules 2015, 16, 2541. |
| [12] | Yang P.; Zhu F.; Zhang Z.; Cheng Y.; Wang Z.; Li Y. Chem. Soc. Rev. 2021, 50, 8319. |
| [13] | Webber M. J.; Tibbitt M. W. Nat. Rev. Mater. 2022, 7, 541. |
| [14] | Zhang C.; Xiang L.; Zhang J.; Liu C.; Wang Z.; Zeng H.; Xu Z. K. Chem. Sci. 2022, 13, 1698. |
| [15] | Wu J.; Zhang L.; Wang Y.; Long Y.; Gao H.; Zhang X.; Zhao N.; Cai Y.; Xu J. Langmuir 2011, 27, 13684. |
| [16] | Nam S.; Mooney D. Chem. Rev. 2021, 121, 11336. |
| [17] | Liu B. W.; Zhao H. B.; Wang Y. Z. Adv. Mater. 2022, 34, e2107905. |
| [18] | Li C.; Xu L.; Zuo Y. Y.; Yang P. Biomater. Sci. 2018, 6, 836. |
| [19] | Gu J.; Su Y.; Liu P.; Li P.; Yang P. ACS Appl. Mater. Interfaces 2017, 9, 198. |
| [20] | Wang D.; Ha Y.; Gu J.; Li Q.; Zhang L.; Yang P. Adv. Mater. 2016, 28, 7414. |
| [21] | Wu Z.; Yang P. Adv. Mater. Interfaces 2015, 2, 1400401. |
| [22] | Tao F.; Han Q.; Liu K.; Yang P. Angew. Chem., Int. Ed. 2017, 56, 13440. |
| [23] | Han Q.; Tao F.; Xu Y.; Su H.; Yang F.; Korstgens V.; Muller-Buschbaum P.; Yang P. Angew. Chem., Int. Ed. 2020, 59, 20192. |
| [24] | Yang Q.-M.; Liu Y.-C.; Chen L.-X.; Yang P. Acta Polym. Sin. 2020, 51, 890. (in Chinese) |
| [24] | ( 杨庆敏, 刘永春, 陈立新, 杨鹏, 高分子学报, 2020, 51, 890.) |
| [25] | Liu Y.; Tao F.; Miao S.; Yang P. Acc. Chem. Res. 2021, 54, 3016. |
| [26] | Fitzpatrick A. W.; Debelouchina G. T.; Bayro M. J.; Clare D. K.; Caporini M. A.; Bajaj V. S.; Jaroniec C. P.; Wang L.; Ladizhansky V.; Muller S. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 5468. |
| [27] | Ye X.; Shao C.; Fan Q.; Shang L.; Ye F. J. Colloid Interface Sci. 2021, 604, 737. |
| [28] | Hu X.; Tian J.; Li C.; Su H.; Qin R.; Wang Y.; Cao X.; Yang P. Adv. Mater. 2020, 32, e2000128. |
| [29] | Sturm Nee Rosseeva E. V.; Colfen H. Chem. Soc. Rev. 2016, 45, 5821. |
| [30] | Mulaj M.; Foley J.; Muschol M. J. Am. Chem. Soc. 2014, 136, 8947. |
| [31] | Tao F.; Han Q.; Yang P. Langmuir 2019, 35, 183. |
| [32] | Eisenberg D.; Weiss R.; Terwilliger T. Nature 1982, 299, 5881. |
| [33] | Gao A.; Wu Q.; Wang D.; Ha Y.; Chen Z.; Yang P. Adv. Mater. 2016, 28, 579. |
| [34] | Li J.; Tian J.; Gao Y.; Qin R.; Pi H.; Li M.; Yang P. Chem. Eng. J. 2021, 410, 128347. |
| [35] | Liu R.; Zhao J.; Han Q.; Hu X.; Wang D.; Zhang X.; Yang P. Adv. Mater. 2018, 30, e1802851. |
| [36] | Zhao J.; Qu Y.; Chen H.; Xu R.; Yu Q.; Yang P. J. Mater. Chem. B 2018, 6, 4645. |
| [37] | Shen Y.; Posavec L.; Bolisetty S.; Hilty F. M.; Nystrom G.; Kohlbrecher J.; Hilbe M.; Rossi A.; Baumgartner J.; Zimmermann M. B. Nat. Nanotechnol. 2017, 12, 642. |
| [38] | Yang F.; Yang Q.; Chen M.; Luo C.; Chen W.; Yang P. Cell Rep. Phys. Sci. 2021, 2, 100379. |
| [39] | Chang M.; Fan S.; Lu R.; Tao F.; Yang F.; Han Q.; Liu J.; Yang P. ACS Appl. Mater. Interfaces 2021, 13, 42451. |
| [40] | Chen J.; Xu M.; Wang L.; Li T.; Li Z.; Wang T.; Li P. Colloids Surf., B 2022, 219, 112854. |
| [41] | Peydayesh M.; Suter M. K.; Bolisetty S.; Boulos S.; Handschin S.; Nystrom L.; Mezzenga R. Adv. Mater. 2020, 32, e1907932. |
| [42] | Diaz-Gomez L.; Concheiro A.; Alvarez-Lorenzo C. Appl. Surf. Sci. 2018, 452, 32. |
| [43] | Zhang W.; Lu X.; Yuan Z.; Shen M.; Song Y.; Liu H.; Deng J.; Zhong X.; Zhang X. Int. J. Nanomed. 2019, 14, 977. |
| [44] | Lu X.; Zhang W.; Liu Z.; Ma S.; Sun Y.; Wu X.; Zhang X.; Gao P. Med. Sci. Monit. 2019, 25, 2658. |
| [45] | Peng Y.; Yang J.; Fu W.; Gao Q.; Yao S.; Peng C.; Hou S. Mater. Today Adv. 2022, 14, 100232. |
| [46] | He W.; Wang X.; Hang T.; Chen J.; Wang Z.; Mosselhy D. A.; Xu J.; Wang S.; Zheng Y. Carbohydr. Polym. 2023, 309, 120681. |
| [47] | Xu K.; Cai K. Mater. Lett. 2019, 247, 95. |
| [48] | Yao S.; Jin B.; Liu Z.; Shao C.; Zhao R.; Wang X.; Tang R. Adv. Mater. 2017, 29, 1605903. |
| [49] | Ye Y.; Lu R.; Ren H.; Yang Y.; Li T.; Zhang X.; Yang P.; Zhang X. Mater. Des. 2023, 226, 111654. |
| [50] | Ha Y.; Yang J.; Tao F.; Wu Q.; Song Y.; Wang H.; Zhang X.; Yang P. Adv. Funct. Mater. 2018, 28, 1704476. |
| [51] | Yang J.; Zhang K.; Que K.; Hou S.; Chen Z.; Li Y.; Wang Y.; Song Y.; Guan B.; Zhang W. Mater. Sci. Eng., C 2018, 92, 206. |
| [52] | Gao Y.; Pang Y.; Wei S.; Han Q.; Miao S.; Li M.; Tian J.; Fu C.; Wang Z.; Zhang X. ACS Appl. Mater. Interfaces 2023, 15, 10426. |
| [53] | Ding Y.; Yuan Z.; Liu P.; Cai K.; Liu R. Mater. Sci. Eng., C 2020, 111, 110851. |
| [54] | Li Y.; Fu Y.; Zhang H.; Wang X.; Chen T.; Wu Y.; Xu X.; Yang S.; Ji P.; Song J. Adv. Healthcare Mater. 2022, 11, e2102807. |
| [55] | Li C.; Lu D.; Deng J.; Zhang X.; Yang P. Adv. Mater. 2019, 31, e1903973. |
| [56] | Wang Z.; Fu C.; Gao Y.; Wu Z.; Chen W.; Hu B.; Xu S.; Zhang Z.; Yang P. Colloids Surf., B 2023, 225, 113239. |
| [57] | Fu C.; Wang Z.; Gao Y.; Zhao J.; Liu Y.; Zhou X.; Qin R.; Pang Y.; Hu B.; Zhang Y. Nat. Sustain. 2023, 6, 984. |
| [58] | Zhang N.; Deng Z.; Wang Q.; Zhou M.; Wang P.; Yu Y. Chem. Eng. J. 2022, 432, 134198. |
| [59] | Zhang N.; Zhu X.; Wang Q.; Zhou M.; Wang P.; Yu Y. Int. J. Biol. Macromol. 2022, 217, 552. |
| [60] | Zhang N.; Wang W.; Zhou M.; Yu Y.; Wang P.; Wang Q. Ind. Crops Prod. 2023, 198, 116637. |
| [61] | Qin R.; Liu Y.; Tao F.; Li C.; Cao W.; Yang P. Adv. Mater. 2019, 31, e1803377. |
| [62] | Luo Y.; Abidian M. R.; Ahn J.-H.; Akinwande D.; Andrews A. M.; Antonietti M.; Bao Z.; Berggren M.; Berkey C. A.; Bettinger C. J. ACS Nano 2023, 17, 5211. |
| [63] | Ha Y.; Shi L.; Chen Z.; Wu R. Adv. Sci. 2019, 6, 1900272. |
| [64] | Saif B.; Zhang W.; Zhang X.; Gu Q.; Yang P. ACS Nano 2019, 13, 7736. |
| [65] | Ha Y.; Shi L.; Yan X.; Chen Z.; Li Y.; Xu W.; Wu R. ACS Appl. Mater. Interfaces 2019, 11, 45546. |
| [66] | Zhu T.-T.; Xu P.; Gao Y.-X.; Yu S.-S.; Liu D.-F.; Yu H.-Q. ACS ES&T Water 2022, 2, 2716. |
| [67] | Fang J.; Liu G.; Chen C.; Lin C.; Zhang B.; Jin H.; Chen Y.; Lu J.; Zhu L. Sep. Purif. Technol. 2021, 254, 117585. |
| [68] | Yang F.; Tao F.; Li C.; Gao L.; Yang P. Nat. Commun. 2018, 9, 5443. |
| [69] | Remanan S.; Samantaray P. K.; Bose S.; Das N. C. Microporous Mesoporous Mater. 2021, 316, 110945. |
| [70] | Liang C.; Qin S.; Ai H.; Li S.; Du K. Chem. Eng. J. 2022, 441, 136005. |
| [71] | Li M.; Chen M.; Yang F.; Qin R.; Yang Q.; Ren H.; Liu H.; Yang P. Adv. Healthcare Mater. 2023, e2300999. |
| [72] | Yang F.; Yan Z.; Zhao J.; Miao S.; Wang D.; Yang P. J. Mater. Chem. A 2020, 8, 3438. |
| [73] | Yang Q.; Cao J.; Yang F.; Liu Y.; Chen M.; Qin R.; Chen L.; Yang P. Chem. Eng. J. 2021, 416, 129066. |
| [74] | Zhao J.; Li Q.; Miao B.; Pi H.; Yang P. Small 2020, 16, e2000043. |
| [75] | Zhao J.; Miao B.; Yang P. ACS Appl. Mater. Interfaces 2020, 12, 35435. |
| [76] | Song P.; Zhang J.; Li Y.; Liu G.; Li N. Acta Chim. Sinica 2022, 80, 690. (in Chinese) |
| [76] | ( 宋攀奇, 张建桥, 李怡雯, 刘广峰, 李娜, 化学学报, 2022, 80, 690.) |
| [77] | Yin X.; Gu K.; Shao Z. Z. Acta Chim. Sinica 2023, 81, 116. (in Chinese) |
| [77] | ( 殷雪旸, 顾恺, 邵正中, 化学学报, 2023, 81, 116.) |
/
| 〈 |
|
〉 |