Article

Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework

  • Jian Liu ,
  • Jinhua Ou ,
  • Zeping Li ,
  • jingyi Jiang ,
  • Rongtao Liang ,
  • Wenjie Zhang ,
  • kaijian Liu ,
  • Yu Han
Expand
  • a School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
    b Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
    c Liaoning Province Building Science Research Institute Co. Ltd, Shenyang 110005, China

Received date: 2023-08-10

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(22202067); Hunan Provincial Natural Science Foundation of China(2023JJ30206); Research Foundation of Education Bureau of Hunan Province, China(22A0620); National Students’ project for innovation and entrepreneurship training program(S202311528006); National Students’ project for innovation and entrepreneurship training program(S202311528102X); Hunan Young Scientific and Technological Innovative Talents(2020RC3055); Open Project Fund of Materials Science and Engineering of Hunan Institute of Technology(KFA23001)

Abstract

Aromatic amines and their derivatives are widely used as important active intermediates in drugs, dyes and herbicides. Therefore, the development of highly efficient, low-cost, and highly selective catalysts for the hydrogenation of nitroaromatic hydrocarbons is desirable. In this study, Zn-Co metal-organic framework (MOF) materials were synthesized with Zn2+/Co2+ as the metal source and 2-methylimidazole as an organic ligand at room temperature. Then, a Co catalyst (Co-N-C) was prepared by in-situ pyrolysis using the Zn-Co MOF as a sacrificial template under a nitrogen atmosphere. Aromatic nitro compounds can be selectively converted to the corresponding aromatic amines using ethanol as solvent, hydrazine hydrate as a hydrogen source, and Co-N-C as catalyst. The Co-N-C synthesized by pyrolysis at 1000 ℃ possesses the best catalytic activity. The effects of solvent and reaction time and the amount of Co-N-C, ethanol, and hydrazine hydrate on the catalytic system were investigated. The catalytic effect was the best when 5 mg Co-N-C, 4 mL ethanol, and 4 mmol hydrazine hydrate were added to the system, and the yield of aniline reached 100% after 10 h. Thirty-one different types of nitro-aromatic compounds, including ortho-, meta-, and para-substituted nitroaromatics with electron-donating or electron-withdrawing substituents, nitrobenzene derivatives with other reducible functional groups, and heterocyclic and polycyclic aromatic compounds, were obtained in high yields under this system, which has a wide substrate scope. In addition, the flutamide and nilutamide derivatives and aminoglutethimide were prepared in excellent yields using the Co-N-C catalytic system. The feasibility of the Co-N-C catalytic system was demonstrated using a gram-scale reaction. Cycling and anti-leaching experiments demonstrated that the Co-N-C material has excellent stability and anti-leaching properties, and acts as a reusable heterogeneous catalyst, which can be easily separated and collected by centrifugation. In addition, two reaction mechanisms of direct reduction and condensation reduction of nitro-aromatics using a Co-N-C catalyzed system were proposed by testing the reaction process. This research provides an efficient, simple, and green method for the hydrogenation reduction of nitroaromatics.

Cite this article

Jian Liu , Jinhua Ou , Zeping Li , jingyi Jiang , Rongtao Liang , Wenjie Zhang , kaijian Liu , Yu Han . Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework[J]. Acta Chimica Sinica, 2023 , 81(12) : 1701 -1707 . DOI: 10.6023/A23080374

References

[1]
Yan, Z.; Xie, H.-P.; Shen, H.-Q.; Zhou, Y.-G. Org. Lett. 2018, 20, 1094.
[2]
Yang, H.; Wang, L.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Chem. Eng. J. 2022, 431, 133863.
[3]
Romero, A. H. ChemistrySelect 2020, 5, 13054.
[4]
Lakshminarayana, B.; Selvaraj, M.; Satyanarayana, G.; Subrahmanyam, C. Catal. Rev. 2022, 10.1080/01614940.2022.2057045.
[5]
Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Commun. 2010, 46, 1769.
[6]
Long, J.; Zhou, Y.; Li, Y. Chem. Commun. 2015, 51, 2331.
[7]
Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Adv. Mater. 2014, 26, 1272.
[8]
Jin, H.; Li, P.; Cui, P.; Shi, J.; Zhou, W.; Yu, X.; Song, W.; Cao, C. Nat. Commun. 2022, 13, 723.
[9]
Chugh, V.; Chatterjee, B.; Chang, W. C.; Cramer, H. H.; Hindemith, C.; Randel, H.; Weyhermüller, T.; Farès, C.; Werlé, C. Angew. Chem. Int. Ed. 2022, 61, e202205515.
[10]
Sarki, N.; Kumar, R.; Singh, B.; Ray, A.; Naik, G.; Natte, K.; Narani, A. ACS Omega 2022, 7, 19804.
[11]
Li, J.; Ding, S.; Wang, F.; Zhao, H.; Kou, J.; Akram, M.; Xu, M.; Gao, W.; Liu, C.; Yang, H. J. Colloid Interf. Sci. 2022, 625, 640.
[12]
Wang, H.; Wang, Y.; Li, Y.; Lan, X.; Ali, B.; Wang, T. ACS Appl. Mater. Interfaces 2020, 12, 34021.
[13]
Yang, L.; Jiang, Z.; Fan, G.; Li, F. Catal. Sci. Technol. 2014, 4, 1123.
[14]
Baghbanian, S. M.; Farhang, M.; Vahdat, S. M.; Tajbakhsh, M. J. Mol. Catal. A-Chem. 2015, 407, 128.
[15]
Natte, K.; Goyal, V.; Sarki, N.; Poddar, M. K.; Ray, A. New J. Chem. 2021, 45, 14687.
[16]
Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138, 2629.
[17]
Tian, H.; Zhou, J.; Li, Y.; Wang, Y.; Liu, L.; Ai, Y.; Hu, Z.-N.; Li, J.; Guo, R.; Liu, Z.; Sun, H.-b.; Liang, Q. ChemCatChem 2019, 11, 5543.
[18]
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal. 2023, 13, 5744.
[19]
Lara, P.; Philippot, K. Catal. Sci. Technol. 2014, 4, 2445.
[20]
Chen, X.; Shen, K.; Ding, D.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 10641.
[21]
Shi, T.; Li, H.; Yao, L.; Ji, W.; Au, C.-T. Appl. Catal. A-Gen. 2012, 425-426, 68.
[22]
Chen, J. L.; Xu, F.; Ma, F. Q.; Ren, M. N.; Zhou, J. D.; Yu, Z. Q.; Su, W. K. J. Flow Chem. 2021, 11, 823.
[23]
Deshpande, R. M.; Mahajan, A. N.; Diwakar, M. M.; Ozarde, P. S.; Chaudhari, R. V. J. Org. Chem. 2004, 69, 4835.
[24]
Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. Nat. Commun. 2022, 144, 18155.
[25]
Gan, T.; Wang, D. Nano Res. 2023, doi: 10.1007/s12274-023-5700-4.
[26]
Li, R.; Wang, D. Nano Res. 2022, 15, 6888.
[27]
Li, J.; Li, Y.; Zhang, T. Sci. China Mater. 2020, 63, 889.
[28]
Li, L. L.; Liu, Y.; Song, S. Y.; Zhang, H. J. Acta Chim. Sinica 2022, 80, 16 (in Chinese).
[28]
(李玲玲, 刘宇, 宋术岩, 张洪杰, 化学学报, 2022, 80, 16.)
[29]
Hao, Y.-C.; Chen, L.-W.; Li, J.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q.; Gao, W.-Y.; Li, S.; Yu, Z.-L. Nat. Commun. 2021, 12, 2682.
[30]
Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. ACS Catal. 2019, 9, 11042.
[31]
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001 (in Chinese).
[31]
(鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.)
[32]
Zhao, R. Y.; Ji, G. P.; Liu, Z. M. Chem. J. Chin. Univ. 2022, 43, 189 (in Chinese).
[32]
(赵润瑶, 纪桂鹏, 刘志敏, 高等学校化学学报, 2022, 43, 189.) (in Chinese).
[33]
Jin, X. Y.; Zhang, L. B.; Sun, X. P.; Han, B. X. Chem. J. Chin. Univ. 2022, 43, 11 (in Chinese).
[33]
(金湘元, 张礼兵, 孙晓甫, 韩布兴, 高等学校化学学报, 2022, 43, 11.)
[34]
Zhou, W. W.; Wei, X. Y.; Xu, M. Y.; Fan, F.; Chen, Z. P.; Kang, J.; Zhang, L.; Zhou, A. N. Chinese J. Inorg. Chem. 2023, 39, 1261 (in Chinese).
[34]
(周文武, 韦晓艺, 徐梦宇, 樊飞, 陈治平, 康洁, 张乐, 周安宁, 无机化学学报, 2023, 39, 1261.)
[35]
Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708.
[36]
Hu, L.; Huang, J.; Wang, J.; Jiang, S.; Sun, C.; Song, S. Appl. Catal. B-Environ. 2023, 320, 121945.
[37]
Jiao, L.; Xu, W.; Wu, Y.; Yan, H.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Chem. Soc. Rev. 2021, 50, 750.
[38]
Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Coordin. Chem. Rev. 2020, 418, 213376.
[39]
Lu, C.; Fang, R.; Chen, X. Adv. Mater. 2020, 32, 1906548.
[40]
Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Adv. Mater. 2022, 34, 2200102.
[41]
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326.
[42]
Li, M.; Chen, S.; Jiang, Q.; Chen, Q.; Guo, X. ACS Catal. 2021, 11, 3026.
[43]
Zhou, D.; Zhang, L.; Liu, X.; Qi, H.; Liu, Q.; Yang, J.; Su, Y.; Ma, J.; Yin, J.; Wang, A. Nano Res. 2022, 15, 519.
[44]
Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J. L.; Sun, X. Adv. Energy Mater. 2020, 10, 2001561.
[45]
Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. J. Mater. Chem. A 2023, 11, 3315.
[46]
Hwang, J. Korean J. Chem. Eng. 2021, 38, 1104.
[47]
Ou, J.; Xiang, J.; Liu, J.; Sun, L. ACS Appl. Mater. Interfaces 2019, 11, 14862.
[48]
Ou, J.; Hu, B.; He, S.; Wang, W.; Han, Y. Sol. Energy 2020, 201, 693.
[49]
Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Org. Chem. Front. 2021, 8, 3102.
[50]
Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. J. Org. Chem. 2021, 86, 14974.
[51]
Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
[52]
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800.
[53]
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2020, 59, 15849.
[54]
Cao, Y.; Liu, K.; Wu, C.; Zhang, H.; Zhang, Q. Appl. Catal. A-Gen. 2020, 592, 117434.
[55]
Huang, H.; Tan, M.; Wang, X.; Zhang, M.; Guo, S.; Zou, X.; Lu, X. ACS Appl. Mater. Interfaces 2018, 10, 5413.
Outlines

/