Article

Smart Two-dimensional Photonic Crystal Hydrogel for Accurate Detection of Hg2+

  • Yuqing Shi ,
  • Mingzhu Chu ,
  • Bo Han ,
  • Haojie Ma ,
  • Ran Li ,
  • Xueyan Hou ,
  • Yuqi Zhang ,
  • Ji-Jiang Wang
Expand
  • Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi 716000, China

Received date: 2023-10-09

  Online published: 2023-12-11

Supported by

National Natural Science Foundation of China(21663032); National Natural Science Foundation of China(22061041); Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)

Abstract

A smart two-dimensional photonic crystal (2DPC) hydrogel was developed for accurate detection of Hg2+ by combining the Debye diffraction effect of 2DPC and the volume phase transition characteristic of hydrogel. The polystyrene (PS) 2DPC arrays were first fabricated by needle-tip-flow method, in which the monodispersed PS microspheres were orderly self-assembled on the water surface to form PS 2DPC and then transferred to glass slide. The poly(acrylamide-allylthiourea) hydrogels embedded with the PS 2DPC arrays were fabricated by “sandwich” method, in which the polymerization precursor solution including monomers acrylamide and allylthiourea was added to the PS 2DPC surface and covered with a glass slide, followed by photopolymerization. The atoms including N, O and S from functional groups on the hydrogel chains selectively coordinated with Hg2+, shortening the distance between the hydrogel chains and increasing the crosslinking density of the hydrogel. As a result, the hydrogel shrank and the PS microsphere spacing of the 2DPC decreased, which increased the diameter of the Debye diffraction ring. The microsphere spacing changes were acquired by monitoring Debye diffraction ring diameters before and after the response of the 2DPC hydrogel, achieving the highly sensitive, selective, reversible and fast detection of Hg2+. The linear detection ranges were in 10~100 nmol/L and 25~200 μmol/L, and the limit of detection was found to be 3.32 nmol/L. The prepared smart 2DPC hydrogel was used to detect Hg2+ in cosmetics and water samples to evaluate its practicability. The recovery for the detection of Hg2+ was 98.8%~102.6% and the relative standard deviation was 0.57%~1.09% for a commercially lipstick, and they were 97.2%~103.4% and 0.61%~0.99% for the tap water, respectively. The results demonstrated that our constructed smart 2DPC hydrogels have good applicability, accuracy and reliability for the detection of Hg2+ in real samples. The method is simple for testing, only requiring a laser pointer and a ruler, without needing sophisticated instruments, and it can realize portable detection, providing a new strategy for detecting metal ions.

Cite this article

Yuqing Shi , Mingzhu Chu , Bo Han , Haojie Ma , Ran Li , Xueyan Hou , Yuqi Zhang , Ji-Jiang Wang . Smart Two-dimensional Photonic Crystal Hydrogel for Accurate Detection of Hg2+[J]. Acta Chimica Sinica, 2024 , 82(1) : 9 -15 . DOI: 10.6023/A23100443

References

[1]
Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[2]
John, S. Phys. Rev. Lett. 1987, 58, 2486.
[3]
Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H. Z.; Li, M. Z.; Song, Y. L. Acta Chim. Sinica 2018, 76, 9. (in Chinese)
[3]
(赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林, 化学学报, 2018, 76, 9.)
[4]
Bertucci, S.; Megahd, H.; Dodero, A.; Fiorito, S.; Stasio, F. D.; Patrini, M.; Comoretto, D.; Lova, P. ACS Appl. Mater. Interfaces 2022, 14, 19806.
[5]
Wang, W. T.; Zhao, G. C.; Yang, L.; Zhou, Y. C.; Ding, L. M. Acta Chim. Sinica 2022, 80, 1576. (in Chinese)
[5]
(王文涛, 赵高崇, 杨柳, 周意诚, 丁黎明, 化学学报, 2022, 80, 1576.)
[6]
Foelen, Y.; Schenning, A. P. H. J. Sci. Adv. 2022, 9, 2200399.
[7]
Shen, P.; Zhang, Y.; Cai, Z.; Liu, R.; Xu, X.; Li, R.; Wang, J.-J.; Yang, D. J. Mater. Chem. C 2021, 9, 5840.
[8]
Pei, G. C.; Wang, J. X.; Jiang, L. Acta Chim. Sinica 2021, 79, 414. (in Chinese)
[8]
(裴广晨, 王京霞, 江雷, 化学学报, 2021, 79, 414.)
[9]
Prevo, B. G.; Velev, O. D. Langmuir 2004, 20, 2099.
[10]
Cai, Z.; Zhang, J.-T.; Xue, F.; Hong, Z.; Punihaole, D.; Asher, S. A. Anal. Chem. 2014, 86, 4840.
[11]
Yang, L. M. Ph.D. Dissertation, Shanghai University, Shanghai, 2005. (in Chinese)
[11]
(杨黎明, 博士论文, , 上海大学, 上海, 2005.)
[12]
Murtaza, G.; Rizvi, A. S.; Xue, M.; Qiu, L.; Meng, Z. Anal. Chem. 2022, 94, 7391.
[13]
Rizvi, A. S.; Murtaza, G.; Zhang, W.; Xue, M.; Qiu, L.; Meng, Z. J Pharmaceut. Biomed. 2023, 227, 115104.
[14]
Chen, Q.; Wang, S.; Huang, T.; Xiao, F.; Wu, Z.; Yu, R. Anal. Chem. 2022, 94, 5530.
[15]
Chen, Q.; Wu, L.; Zhao, F.; Liu, B.; Wu, Z.; Yu, R. Food Chem. 2023, 418, 135891.
[16]
Shen, P.; Jang, K.; Cai, Z.; Zhang, Y.; Asher, S. A. Microchim. Acta 2022, 189, 418.
[17]
Shen, P.; Shi, Y.; Li, R.; Han, B.; Ma, H.; Hou, X.; Zhang, Y.; Jiang, L. Biosensors 2022, 12, 662.
[18]
Shen, P.; Li, M.; Li, R.; Han, B.; Ma, H.; Hou, X.; Zhang, Y.; Wang, J.-J. NPG Asia Mater. 2022, 14, 94.
[19]
Liu, R.; Cai, Z.; Zhang, Q.; Yuan, H.; Zhang, G.; Yang, D. Sens. Actuators B Chem. 2022, 354, 131236.
[20]
Du, W.; Liu, J.; Li, H.; Deng, C.; Luo, J.; Feng, Q.; Tan, Y.; Yang, S.; Wu, Z.; Xiao, F. Anal. Chem. 2023, 95, 4220.
[21]
Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.
[22]
Asher, S. A.; Sharma, A. C.; Goponenko, A. V.; Ward, M. M. Anal. Chem. 2003, 75, 1676.
[23]
Ye, B.-F.; Zhao, Y.-J.; Cheng, Y.; Li, T.-T.; Xie, Z.-Y.; Zhao, X.-W.; Gu, Z.-Z. Nanoscale 2012, 4, 5998.
[24]
Qin, J.; Dong, B.; Li, X.; Han, J.; Gao, R.; Su, G.; Cao, L.; Wang, W. J. Mater. Chem. C 2017, 5, 8482.
[25]
Liu, C. H.; Liu, G. Q.; Ren, C. R.; Shi, H. K.; Xue, K.; Cao, Y. L.; Li, H. H.; Liu, J. X. Acta Polym. Sinica 2020, 51, 762. (in Chinese)
[25]
(刘晨辉, 刘根起, 任宸锐, 史红凯, 薛珂, 曹云雷, 李欢欢, 刘建勋, 高分子学报, 2020, 51, 762.)
[26]
Zhao, Q.; Zhang, H.; Fu, H.; Wei, Y.; Cai, W. J. Hazard. Mater. 2020, 398, 122890.
[27]
Jiang, G.; Miao, Y.; Wang, J.; Shao, H.; Chen, H.; Tao, P.; Wang, W.; Yu, Q.; Peng, W.; Zhou, X. Sensor. Actuat. A Phys. 2023, 256, 114343.
[28]
Cheng, F.; Zhang, S.; Zhang, L.; Sun, J.; Wu, Y. Colloid. Surface. A 2022, 636, 128149.
[29]
Liu, L.; Peng, M.; Liang, Z.; Wu, H.; Yan, H.; Zhou, Y.-G. Anal. Chim. Acta 2023, 1276, 341638.
[30]
Zhang, J.-T.; Wang, L.; Lamont, D. N.; Velankar, S. S.; Asher, S. A. Angew. Chem. Int. Ed. 2012, 51, 6117.
[31]
Kou, D.; Ma, W.; Zhang, S. Adv. Funct. Mater. 2021, 31, 2007032.
[32]
Safety and Technical Standards for Cosmetics, 2022, p. 157. (in Chinese)
[32]
(化妆品安全技术规范, 2022, p. 157.)
Outlines

/