Review

Research Progress of Carbon-carbon Bond Linked Two-dimensional Covalent-Organic Frameworks

  • Ying Wei ,
  • Jiacheng Wang ,
  • Yue Li ,
  • Tao Wang ,
  • Shuwei Ma ,
  • Linghai Xie
Expand
  • Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China

Received date: 2023-11-21

  Online published: 2023-12-20

Supported by

National Natural Science Foundation of China(22071112); National Natural Science Foundation of China(22275098); Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications(GDX2022010005)

Abstract

Two-dimensional polymers (2DPs) are a type of planar polymer materials that possess regular porous structures. They fulfill the demand for thin, high-performing, and stable materials in flexible devices, making them highly potential candidates for applications in the field of flexible electronics. As a special class of covalent two-dimensional polymer materials, two-dimensional covalent organic frameworks (COFs) refer to crystalline porous materials with a two-dimensional topology formed by connecting π-conjugated building units through covalent bonds. The unique electronic structure of COFs gives them better electrical properties compared to other two-dimensional polymers. Furthermore, their unique periodic porous structure, high specific surface area, and excellent stability make them highly suitable for various applications such as ion transport, optoelectronic materials, and catalysis. Among these, carbon-carbon bond-linked COFs are regarded as one of the most promising types of two-dimensional polymers due to their excellent stability and good crystallinity. In recent years, many carbon-carbon bonded COFs with different structures and excellent properties have emerged based on different design principles and synthesis strategies. In this review, we summarize and introduce four common synthesis methods for preparing C=C bonded COFs, namely solvent-thermal method, melt-polymerization method, interface polymerization method, and copper template method. Furthermore, we categorize C=C bonded COFs into four classes: [C2+C3], [C2+C2], [C3+C3], and [C4+C2], according to the topological structure of the building units. We focus on analyzing the relationship between the composite structure of these COFs and their stability, electrical properties, catalytic performance, and other properties. Additionally, we compile and summarize the research progress of C=C bonded COFs in terms of synthesis methods, structural innovation, performance improvement, and practical applications. This compilation will be beneficial for researchers in the subsequent studies of C=C bonded COFs to select building units based on target structure and performance application and conduct pre-design. Furthermore, this review also includes previously overlooked C—C bonded COFs, providing a more comprehensive reference. In summary, this review aims to provide guidance for researchers in related fields to better design and synthesize multifunctional crystalline porous materials, thereby promoting the further development and application of carbon-carbon bond-linked COFs in various fields.

Cite this article

Ying Wei , Jiacheng Wang , Yue Li , Tao Wang , Shuwei Ma , Linghai Xie . Research Progress of Carbon-carbon Bond Linked Two-dimensional Covalent-Organic Frameworks[J]. Acta Chimica Sinica, 2024 , 82(1) : 75 -102 . DOI: 10.6023/A23110507

References

[1]
Wang, P.; Hu, M.; Wang, H.; Chen, Z.; Feng, Y.; Wang, J.; Ling, W.; Huang, Y. Adv. Sci. 2020, 7, 2001116.
[2]
Nathan, A.; Ahnood, A.; Cole, M. T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A. Proc. IEEE 2012, 100, 1486.
[3]
Stoppa, M.; Chiolerio, A. Sensors 2014, 14, 11957.
[4]
Aftab, S.; Hegazy, H. H.; Kabir, F. Adv. Mater. Technol. 2023, 2201897.
[5]
Hoang, A. T.; Hu, L.; Katiyar, A. K.; Ahn, J.-H. Matter 2022, 5, 4116.
[6]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[7]
Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. ACS Nano 2013, 7, 2898.
[8]
Chang, C.; Chen, W.; Chen, Y.; Chen, Y.-H.; Chen, Y.; Ding, F.; Fan, C.-H.; Fan, H.-J.; Fan, Z.-X.; Gong, C.; Gong, Y.-J.; He, Q.-Y.; Hong, X.; Hu, S.; Hu, W.-D.; Huang, W.; Huang, Y.; Ji, W.; Li, D.-H.; Li, L.-J.; Li, Q.; Lin, L.; Ling, C.-Y.; Liu, M-H.; Liu, N.; Liu, Z.; Kian, P. L.; Ma, J.-M.; Miao, F.; Peng, J.-M.; Ma, H-L.; Shao, M-F.; Song, L.; Su, S.; Sun, S.; Tan, C-L.; Tang, Z.-Y.; Wang, D-S.; Wang, H.; Wang, J.-L.; Wang, X.; Wang, X.-R.; Wee, A. T. S.; Wei, Z.-M.; Wu, Y.-E.; Wu, Z.-S.; Xiong, J.; Xiong, Q.-H.; Xu, W.-G.; Yin, P.; Zeng, H.-B.; Zeng, Z.-Y.; Zhai, T.-Y.; Zhang, H.; Zhang, H.; Zhang, Q.-C.; Zhang, T.-R.; Zhang, X.; Zhao, L.-D.; Zhao, M.-T.; Zhao, W.-J.; Zhao, Y.-X.; Zhou, K.-G.; Zhou, X.; Zhou, Y.; Zhu, H.-W.; Zhang, H.; Liu, Z.-F. Acta Phys.-Chim. Sin. 2021, 37, 2108017.
[9]
Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem. Int. Ed. 2009, 48, 1030.
[10]
Servalli, M.; Schlüter, A. D. Annu. Rev. Mater. Res. 2017, 47, 361.
[11]
Li, S.-Z.; Huang, X.; Zhang, H. Acta Chim. Sinica 2015, 73, 913.
[12]
Thomas, S.; Li, H.; Zhong, C.; Matsumoto, M.; Dichtel, W. R.; Bredas, J.-L. Chem. Mater. 2019, 31, 3051.
[13]
Chen, J.-C.; Zhang, M.-X.; Wang, S.-A. Acta Chim. Sinica 2023, 81, 146. (in Chinese)
[13]
(陈俊畅, 张明星, 王殳凹, 化学学报, 2023, 81, 146.)
[14]
Stupp, S.; Son, S.; Lin, H.-C.; Li, L. Science 1993, 259, 59.
[15]
Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Small 2011, 7, 1207.
[16]
Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; G?tzinger, S.; Schlüter, A. D.; Sakamoto, J. Nat. Chem. 2012, 4, 287.
[17]
Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nanotechnol. 2007, 2, 687.
[18]
Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.
[19]
Zhou, T.-Y.; Lin, F.; Li, Z.-T.; Zhao, X. Macromolecules 2013, 46, 7745.
[20]
Evans, A. M.; Strauss, M. J.; Corcos, A. R.; Hirani, Z.; Ji, W.; Hamachi, L. S.; Aguilar-Enriquez, X.; Chavez, A. D.; Smith, B. J.; Dichtel, W. R. Chem. Rev. 2021, 122, 442.
[21]
Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[22]
Li, L.-L.; Liu, S.; Zhang, Q.; Hu, N.-T.; Wei, L.-M.; Yang, Z.; Wei, H. Acta Physico-Chim. Sinica 2017, 33, 1960. (in Chinese)
[22]
(李路路, 刘帅, 章琴, 胡南滔, 魏良明, 杨志, 魏浩, 物理化学学报, 2017, 33, 1960.)
[23]
Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[24]
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[25]
Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068.
[26]
Yuan, C.; Fu, S.; Yang, K.; Hou, B.; Liu, Y.; Jiang, J.; Cui, Y. J. Am. Chem. Soc. 2020, 143, 369.
[27]
Yu, G.; Wang, C. Chinese J. Org. Chem. 2020, 40, 1437. (in Chinese)
[27]
(于歌, 汪成, 有机化学, 2020, 40, 1437).
[28]
Xu, S.; Li, Y.; Biswal, B. P.; Addicoat, M. A.; Paasch, S.; Imbrasas, P.; Park, S.; Shi, H.; Brunner, E.; Richter, M.; Lenk, S.; Reineke, S.; Feng, X.-L. Chem. Mater. 2020, 32, 7985.
[29]
Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. Polym. Chem. 2016, 7, 4176.
[30]
Jin, E.; Li, J.; Geng, K.; Jiang, Q.; Xu, H.; Xu, Q.; Jiang, D. Nat. Commun. 2018, 9, 4143.
[31]
Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Angew. Chem. Int. Ed. 2019, 58, 5376.
[32]
Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; Feng, X.-L. Angew. Chem. Int. Ed. 2019, 58, 849.
[33]
Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109, 5868.
[34]
Pastoetter, D. L.; Xu, S.; Borrelli, M.; Addicoat, M.; Biswal, B. P.; Paasch, S.; Dianat, A.; Thomas, H.; Berger, R.; Reineke, S.; Brunner, E.; Cuniberti, G.; Richter, M.; Feng, X.-L. Angew. Chem. Int. Ed. 2020, 59, 23620.
[35]
Jin, E.; Geng, K.; Lee, K. H.; Jiang, W.; Li, J.; Jiang, Q.; Irle, S.; Jiang, D. Angew. Chem. Int. Ed. 2020, 59, 12162.
[36]
Wang, Z.; Yang, Y.; Zhao, Z.; Zhang, P.; Zhang, Y.; Liu, J.; Ma, S.; Cheng, P.; Chen, Y.; Zhang, Z. Nat. Commun. 2021, 12, 1982.
[37]
Wang, Z.; Zhang, Y.; Lin, E.; Geng, S.; Wang, M.; Liu, J.; Chen, Y.; Cheng, P.; Zhang, Z. J. Am. Chem. Soc. 2023, 145, 21483.
[38]
Wu, D.; Che, Q.; He, H.; El-Khouly, M. E.; Huang, S.; Zhuang, X.; Zhang, B.; Chen, Y. ACS Mater. Lett. 2023, 5, 874.
[39]
Yan, H.; Kou, Z.; Li, S.; Zhang, T. Small 2023, 2207972.
[40]
Shanavaz, H.; Kannanugu, N.; Kasai, D.; Kumar, K. Y.; Raghu, M.; Prashanth, M.; Khan, M. A.; Jeon, B.-H.; Linul, E. J. Energy Storage 2023, 71, 108006.
[41]
He, T.; Geng, K.; Jiang, D. Trends Chem. 2021, 3, 431.
[42]
Yu, G.; Liu, Y.; Yang, X.; Li, Y.; Li, Y.; Zhang, Y.; He, C. Sep. Purif. Technol. 2023, 312, 123401.
[43]
Cui, Y.; Fang, Q.; Lei, H.; Xue, G.; Yu, W. Chem. Phys. Lett. 2003, 377, 507.
[44]
Lenz, R. W.; Handlovits, C. E. J. Org. Chem. 1960, 25, 813.
[45]
Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 6848.
[46]
Bi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Nat. Commun. 2019, 10, 2467.
[47]
Xu, J.; He, Y.; Bi, S.; Wang, M.; Yang, P.; Wu, D.; Wang, J.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 13753.
[48]
Ando, K. J. Org. Chem. 1999, 64, 6815.
[49]
Kurti, L.; Czakó, B., Strategic applications of named reactions in organic synthesis, Elsevier, Burlington, 2005, pp. 502-508.
[50]
Yang, Y.; Zhao, W.; Niu, H.; Cai, Y. ACS Appl. Mater. Inter. 2021, 13, 42035.
[51]
Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Angew. Chem. Int. Ed. 2019, 58, 5376.
[52]
Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. ACS Nano 2015, 9, 931.
[53]
Liu, J.; Wang, H.; Antonietti, M. Chem. Soc. Rev. 2016, 45, 2308.
[54]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
[55]
Jadhav, T.; Fang, Y.; Patterson, W.; Liu, C. H.; Hamzehpoor, E.; Perepichka, D. F. Angew. Chem. Int. Ed. 2019, 58, 13753.
[56]
Acharjya, A.; Pachfule, P.; Roeser, J.; Schmitt, F. J.; Thomas, A. Angew. Chem. Int. Ed. 2019, 58, 14865.
[57]
Wei, S.; Zhang, F.; Zhang, W.; Qiang, P.; Yu, K.; Fu, X.; Wu, D.; Bi, S.; Zhang, F. J. Am. Chem. Soc. 2019, 141, 14272.
[58]
Shi, T.; Wang, H.; Li, L.; Zhao, Z.; Wang, C.; Zhang, X.; Xie, Y. Matter 2022, 5, 1004.
[59]
Friend, R. H.; Gymer, R.; Holmes, A.; Burroughes, J.; Marks, R.; Taliani, C.; Bradley, D.; Santos, D. D.; Bredas, J.-L.; L?gdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
[60]
Ng, S. C.; Lu, H. F.; Chan, H. S.; Fujii, A.; Laga, T.; Yoshino, K. Adv. Mater. 2000, 12, 1122.
[61]
Dai, L.; Dong, A.; Meng, X.; Liu, H.; Li, Y.; Li, P.; Wang, B. Angew. Chem. Int. Ed. 2023, 62, e202300224.
[62]
Wang, Y.; Hao, W.; Liu, H.; Chen, R.; Pan, Q.; Li, Z.; Zhao, Y. Nat. Commun. 2022, 13, 100.
[63]
Sen, S.; Al-Sayah, M. H.; Mohammed, M. S.; Abu-Abdoun, I. I.; El-Kadri, O. M. J. Mater. Sci. 2020, 55, 10896.
[64]
Sun, S. N.; Dong, L. Z.; Li, J. R.; Shi, J. W.; Liu, J.; Wang, Y. R.; Huang, Q.; Lan, Y. Q. Angew. Chem. Int. Ed. 2022, 61, e202207282.
[65]
Yang, S.; Sa, R.; Zhong, H.; Lv, H.; Yuan, D.; Wang, R. Adv. Funct. Mater. 2022, 32, 2110694.
[66]
Xu, Y.; Wu, C.; Chu, N.; Xing, Y.; Yang, J.; Yin, L.; Chen, X. Sep. Purif. Technol. 2023, 307, 1383.
[67]
Sun, B.; Wang, X.; Ye, Z.; Zhang, J.; Chen, X.; Zhou, N.; Zhang, M.; Yao, C.; Wu, F.; Shen, J. Adv. Sci. 2023, 10, e2207507.
[68]
Cui, W. R.; Li, F. F.; Xu, R. H.; Zhang, C. R.; Chen, X. R.; Yan, R. H.; Liang, R. P.; Qiu, J. D. Angew. Chem. Int. Ed. 2020, 59, 17684.
[69]
Zhang, C.-R.; Cui, W.-R.; Xu, R.-H.; Chen, X.-R.; Jiang, W.; Wu, Y.-D.; Yan, R.-H.; Liang, R.-P.; Qiu, J.-D. CCS Chem. 2021, 3, 168.
[70]
Lei, T.; Mi, Y.; Wei, Z.; Li, S.; Pang, S. Dalton Trans. 2023, 52, 1761.
[71]
Wang, H.; Wang, F.; Wu, T.; Liu, Y. Anal. Chem. 2021, 93, 15794.
[72]
Cui, L.; Zhu, C.-Y.; Hu, J.; Meng, X.-M.; Jiang, M.; Gao, W.; Wang, X.; Zhang, C.-Y. Sens. Actuators B Chem. 2023, 374, 132779.
[73]
Zhang, X.; Ren, C.; Hu, F.; Gao, Y.; Wang, Z.; Li, H.; Liu, J.; Liu, B.; Yang, C. Anal. Chem. 2020, 92, 5185.
[74]
Caruso, U.; Panunzi, B.; Diana, R.; Concilio, S.; Sessa, L.; Shikler, R.; Nabha, S.; Tuzi, A.; Piotto, S. Molecules 2018, 231947.
[75]
Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.
[76]
Xu, S.; Sun, H.; Addicoat, M.; Biswal, B. P.; He, F.; Park, S.; Paasch, S.; Zhang, T.; Sheng, W.; Brunner, E.; Hou, Y.; Richter, M.; Feng, X.-L. Adv. Mater. 2021, 33, 2006274.
[77]
Fu, Z.; Wang, X.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I. Chem. Sci. 2020, 11, 543.
[78]
Fan, Y.; Kang, D. W.; Labalme, S.; Li, J.; Lin, W. Angew. Chem. Int. Ed. 2023, 62, e202218908.
[79]
Luo, J.; Lu, J.; Zhang, J. J. Mater. Chem. A 2018, 6, 15154.
[80]
Ou, W.; Zhang, G.; Wu, J.; Su, C. ACS Catal. 2019, 9, 5178.
[81]
Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. ACS Catal. 2020, 10, 8717.
[82]
Chen, W.; Wang, L.; Mo, D.; He, F.; Wen, Z.; Wu, X.; Xu, H.; Chen, L. Angew. Chem. Int. Ed. 2020, 59, 16902.
[83]
Wang, G.-B.; Xie, K.-H.; Kan, J.-L.; Xu, H.-P.; Zhao, F.; Wang, Y.-J.; Geng, Y.; Dong, Y.-B. Chem. Commun. 2023, 59, 1493.
[84]
Ma, T.; Li, J.; Niu, J.; Zhang, L.; Etman, A. S.; Lin, C.; Shi, D.; Chen, P.; Li, L.-H.; Du, X. J. Am. Chem. Soc. 2018, 140, 6763.
[85]
Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem. Int. Ed. 2008, 47, 8862.
[86]
Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem. Int. Ed. 2009, 48, 5439.
[87]
Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. Science 2017, 357, 673.
[88]
Cui, W.-R.; Zhang, C.-R.; Jiang, W.; Li, F.-F.; Liang, R.-P.; Liu, J.; Qiu, J.-D. Nat. Commun. 2020, 11, 436.
[89]
Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem. Soc. Rev. 2007, 36, 198.
[90]
Bai, C.; Qiang, L.; Zhang, B.; Gao, K.; Zhang, J. Friction 2022, 10, 866.
[91]
Das, S.; Hazarika, G.; Manna, D. Chem. Eur. J. 2023, 29, e202203595.
[92]
Wang, H.-G.; Yuan, S.; Si, Z.; Zhang, X.-B. Energy Environ. Sci. 2015, 8, 3160.
[93]
Xu, X.; Zhang, S.; Xu, K.; Chen, H.; Fan, X.; Huang, N. J. Am. Chem. Soc. 2023, 145, 1022.
[94]
Zhang, Y.; Liu, H.; Sun, B. J. Hazard. Mater. 2023, 448, 130866.
[95]
Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, 1740.
[96]
Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. J. Am. Chem. Soc. 2016, 138, 5797.
[97]
Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234.
[98]
You, J.; Yuan, F.; Cheng, S.; Kong, Q.; Jiang, Y.; Luo, X.; Xian, Y.; Zhang, C. Chem. Mater. 2022, 34, 7078.
[99]
Dong, J.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D. Chem. Mater. 2018, 31, 146.
[100]
Guan, X.; Li, H.; Ma, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Nat. Chem. 2019, 11, 587.
[101]
Liu, Y.-Z.; Ren, J.-X.; Wang, Y.-J.; Zhu, X.; Guan, X.-Y.; Wang, Z.-S.; Zhou, Y.-D.; Zhu, L.-K.; Qiu, S.-L.; Xiao, S.-X.; Fang, Q.-R. CCS Chem. 2022, 5, 2033.
[102]
Valente, C.; Choi, E.; Belowich, M. E.; Doonan, C. J.; Li, Q.; Gasa, T. B.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. Chem. Commun. 2010, 46, 4911.
[103]
Yan, Z.; Fang, L.; He, Z.; Xie, H.; Liu, B.; Guo, B.; Yao, Y. Small 2022, 18, 2200388.
[104]
Li, X.; Tang, H.; Gao, L.; Chen, Z.; Li, H.; Wang, Y.; Yang, K.; Lu, S.; Wang, K.; Zhou, Q.; Wang, Z. Polymer 2022, 241, 124474.
[105]
Becker, D.; Biswal, B. P.; Kaleńczuk, P.; Chandrasekhar, N.; Giebeler, L.; Addicoat, M.; Paasch, S.; Brunner, E.; Leo, K.; Dianat, A.; Cuniberti, G.; Berger, R.; Feng, X.-L. Chem. Eur. J. 2019, 25, 6562.
[106]
Cui, W.-R.; Zhang, C.-R.; Xu, R.-H.; Chen, X.-R.; Yan, R.-H.; Jiang, W.; Liang, R.-P.; Qiu, J.-D. ACS ES&T Water 2020, 1, 440.
[107]
Yang, L.; Yan, W.; Yang, N.; Wang, G.; Bi, Y.; Tian, C.; Liu, H.; Zhu, X. Small 2023, 2208118.
[108]
Zhang, F.; Dong, X.; Wang, Y.; Lang, X. Small 2023, 2302456.
[109]
Yang, Y.; Niu, H.; Xu, L.; Zhang, H.; Cai, Y. Appl. Catal., B 2020, 269, 118799.
[110]
Zhai, L.; Yang, S.; Yang, X.; Ye, W.; Wang, J.; Chen, W.; Guo, Y.; Mi, L.; Wu, Z.; Soutis, C. Chem. Mater. 2020, 32, 9747.
[111]
Xu, J.; Yang, C.; Bi, S.; Wang, W.; He, Y.; Wu, D.; Liang, Q.; Wang, X.; Zhang, F. Angew. Chem. Int. Ed. 2020, 59, 23845.
[112]
He, M.-H.; Ye, Z.-Q.; Lin, G.-Q.; Yin, S.; Huang, X.-Y.; Zhou, X.; Yin, Y.; Gui, B.; Wang, C. Acta Chim. Sinica 2023, 81, 784. (in Chinese)
[112]
(何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成, 化学学报, 2023, 81, 784.)
[113]
Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.
[114]
Liu, X.; Qi, R.; Li, S.; Liu, W.; Yu, Y.; Wang, J.; Wu, S.; Ding, K.; Yu, Y. J. Am. Chem. Soc. 2022, 144, 23396.
[115]
Huang, N.; Zhai, L.; Coupry, D. E.; Addicoat, M. A.; Okushita, K.; Nishimura, K.; Heine, T.; Jiang, D. Nat. Commun. 2016, 7, 12325.
[116]
Li, Z.; Deng, T.; Ma, S.; Zhang, Z.; Wu, G.; Wang, J.; Li, Q.; Xia, H.; Yang, S. W.; Liu, X. J. Am. Chem. Soc. 2023, 145, 8364.
[117]
Yu, X.-H.; Huang, W.; Li, Y.-G. Acta Chim. Sinica 2022, 80, 1494. (in Chinese)
[117]
(于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.)
[118]
Yang, M.; Mo, C.; Fang, L.; Li, J.; Yuan, Z.; Chen, Z.; Jiang, Q.; Chen, X.; Yu, D. Adv. Funct. Mater. 2020, 30, 2000516.
[119]
Yang, S.; Streater, D.; Fiankor, C.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2021, 143, 1061.
[120]
Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116.
[121]
Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Angew. Chem. Int. Ed. 2019, 58, 1376.
[122]
Zhang, Q.; Sun, Y.; Li, H.; Tang, K.; Zhong, Y.-W.; Wang, D.; Guo, Y.; Liu, Y. Research 2021, 2021, 9790705.
Outlines

/